Operating Instructions Nivotester FTR525

Process transmitter with control unit for the Soliwave microwave barrier

- Make sure the document is stored in a safe place so that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser Sales Center will supply you with information on modifications or updates to the Operating Instructions.

Table of contents

1 Document information 5
1.1 Purpose of the document 5
1.2 Document conventions 5
1.2.1 Safety symbols 5
1.2.2 Tool symbols 5
1.2.3 Symbols for certain types of information 5
1.2.4 Symbols in graphics 6
1.2.5 Device-specific symbols 6
1.3 Documentation 6
1.3.1 Standard documentation 6
1.3.2 Supplementary device-dependent documentation 7
2 Basic safety instructions 8
2.1 Requirements for personnel 8
2.2 Designated use 8
2.3 Occupational safety 9
2.4 Operational safety 9
2.5 Product safety 9
3 Product description 10
3.1 Product design 10
4 Incoming acceptance and product identification 11
4.1 Incoming acceptance 11
4.2 Product identification 11
4.3 Nameplate 12
4.4 Storage and transportation 12
4.5 Disposal of packaging 12
5 Installation 13
5.1 Installation conditions 13
5.1.1 Operating temperature range 13
5.1.2 Orientation 13
5.1.3 Installation dimensions 14
5.2 Installing the device 14
5.3 Post-installation check 15
6 Electrical connection 16
6.1 Connection conditions 16
6.1.1 Required tool 16
6.1.2 Connecting cable requirements 16
6.2 Connecting the device 17
6.2.1 Connecting the power supply 17
6.2.2 Connecting the microwave barrier 18
6.2.3 Connecting the signal lines 18
6.3 Post-connection check. 19
7 Operating options 20
7.1 Overview of operating options 20
7.2 Structure and function of the operating menu 21
7.2.1 Structure of the operating menu 21
7.2.2 Operating philosophy 21
7.2.3 Access concept 22
7.3 Access to the operating menu via the local display 23
7.3.1 Operational display (initialization) 23
7.3.2 Measured value display 23
7.3.3 Function/function group display 24
7.3.4 Minimum/maximum value display 25
7.3.5 Dot matrix display 25
7.3.6 Error display 26
8 Commissioning 27
8.1 Function check 27
8.2 Switching on the measuring device 27
8.3 Setting the operating language 27
8.4 Configuring the measuring device 28
8.4.1 Adjustments to the application 28
8.4.2 Output adjustments 32
8.4.3 Adjustments to the display 37
8.5 Configuration management 40
8.5.1 Save user settings 40
8.5.2 Device reset 40
8.6 Simulation 40
8.6.1 Simulation mode 41
8.6.2 Simulation value 41
8.7 Protecting settings from unauthorised access 42
8.7.1 Key lock 42
8.7.2 User change 42
9 Operation 44
9.1 Reading off the device locking status 44
9.2 Reading off measured values 44
9.3 Analysis 44
9.3.1 Signal strength limit (1M) 44
9.3.2 Signal strength motion (2M) 45
9.4 Show data logging 46
9.4.1 Min/Max limit (1M) 46
9.4.2 Min/Max limit (2M) 46
9.4.3 Reset Min/Max 46
10 Diagnostics and troubleshooting 47
10.1 General troubleshooting. 47
10.2 Diagnostic information via LEDs. 48
10.3 Diagnostic information on the local display. 48
10.4 Diagnostic functions 48
10.4.1 Present diagnostics 48
10.4.2 Previous diagnostics 49
10.4.3 Erase previous diagnostics 49
10.5 Overview of diagnostic information 49
10.6 Reset device 49
10.7 Device information 50
10.7.1 Device identification 50
10.7.2 Device status 51
10.8 Firmware history 53
11 Maintenance 54
12 Repairs 55
12.1 General notes 55
12.2 Endress+Hauser services 55
12.3 Return 55
12.4 Disposal 55
13 Accessories 56
14 Technical data 57
14.1 Input 57
14.1.1 Measured variable 57
14.1.2 Measurement cycle 57
14.1.3 Galvanic isolation 57
14.2 Output 57
14.2.1 Current output 57
14.2.2 Relay (SPDT, standard) 57
14.2.3 Solid-state relay (SSR, optional) 57
14.2.4 Switching output (open collector, only Alarm) 57
14.3 Power supply 57
14.3.1 Supply voltage 57
14.3.2 Power consumption 58
14.4 Installation 58
14.4.1 Installation position 58
14.4.2 Installation orientation 58
14.5 Environment 58
14.5.1 Ambient temperature 58
14.5.2 Storage temperature 58
14.5.3 Operation height 58
14.5.4 Degree of protection 58
14.5.5 Electrical safety 58
14.5.6 Condensation 58
14.5.7 Electromagnetic compatibility (EMC) 58
15.6 Mechanical construction 58
15.6.1 Design, dimensions 58
15.6.2 Weight 58
15.6.3 Material 59
15.6.4 Terminals 59
15.7 Certificates and approvals 59
15.7.1 CE mark 59
15.7.2 Ex approval 59
15.7.3 Other standards and guidelines 59
15.8 Supplementary documentation 59
16 Appendix 60
16.1 User-specific settings 60
16.2 Operating menu 61
Index 67

1 Document information

1.1 Purpose of the document

These Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, servicing and disposal.

1.2 Document conventions

1.2.1 Safety symbols

Symbol	Meaning
A WARNING	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
NOTICE	NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Tool symbols

Symbol	Meaning
\square	Flat blade screwdriver

1.2.3 Symbols for certain types of information

Symbol	Meaning
	Permitted Indicates procedures, processes or actions that are permitted.
1	Tip Indicates additional information.
Reference to documentation	
Refers to the corresponding device documentation.	

1.2.4 Symbols in graphics

Symbol	Meaning
$\mathbf{1 , 2 , 3 \ldots}$	Item numbers
$1 ., 2 ., 3 . \ldots$	Series of steps
坒	Hazardous area
2x	Safe area (non-hazardous area)

1.2.5 Device-specific symbols

Symbol	Meaning
\square	Free path Indicates a free path (point level detection)
\square	Covered path Indicates a covered path (point level detection)
\square	Minimum bulk flow Indicates a minimum or absent bulk flow (bulk flow monitoring) Indicates a maximum bulk flow (bulk flow monitoring)
\square	LED on Indicates an activate output with its corresponding illuminated LED
\square	LED off Indicates an inactive output with its corresponding non-illuminated LED
\square	Bidirectional communication Indicates a bidirectional communication between the FTR525 and the devices FQR57 and FDR57 of the Soliwave microwave barrier
\square	

1.3 Documentation

For an overview of the scope of the technical documentation associated with the device, see:

- The W@M Device Viewer: enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The Endress+Hauser Operations App: enter the serial number from the nameplate

1.3.1 Standard documentation

Document	Purpose and content of the document
Technical Information TIO1329F/97/EN	Planning aid for your device The document contains all the technical data pertaining to the device and provides an overview of the accessories and other products that can be ordered for the device.
Brief Operating Instructions KA01344F/97/A2	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

1 The document types listed are available:

- In the Download Area of the Endress+Hauser website:
www.endress.com \rightarrow Downloads

1.3.2 Supplementary device-dependent documentation

Depending on the approval, Safety Instructions (XA) are supplied with the device on delivery. These Safety Instructions (XA) are an integral part of the Operating Instructions.

Feature 010	Approval	Safety Instructions
BA	ATEX II (1)G [Ex ia Ga] IIC / ATEX II (1)D [Ex ia Da] IIIC	XA01603F/97/A3
IA	IECEx [Ex ia Ga] IIC / IECEx [Ex ia Da] IIIC	XA01604F/97/EN

1 The document types listed are available:

- In the Download Area of the Endress+Hauser website: www.endress.com \rightarrow Downloads

2 Basic safety instructions

2.1 Requirements for personnel

The personnel for installation, commissioning, diagnostics and servicing must meet the following requirements:

- Trained, qualified specialists: Must be qualified for this specific function and task
- Authorized by the plant owner/operator
- Familiar with national regulations
- Before starting work: Read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application)
- Follow the instructions and relevant guidelines

Operating personnel must meet the following requirements:

- Instructed and authorized according to the requirements of the task by the facility's owner/operator
- Follow the instructions in this manual

2.2 Designated use

The process transmitter FTR525 provieds the power supply for the microwave barrier Soliwave. It records simultaneously the measurements of the point level detection and optionally of the bulk flow monitoring. The devices FQR57 and FDR57 are operated and parameterised by the FTR525.

NOTICE

- The manufacturer is not liable for damage caused by improper or non-designated use. Conversion work or changes must not be carried out on the device.
- The device is designed for use in industrial environments and may only be operated when installed.
- The device can and may only be repaired by the manufacturer.

Hazardous area

The process transmitter with control unit FTR525, as an associated apparatus, is only permissible exclusively for use outside of the hazardous area.

A. WARNING

Observe Safety Instructions!
\rightarrow 圈7

(1) Use in hazardous area

2.3 Occupational safety

When working on and with the device:

- Wear the required personal protective equipment in accordance with national regulations.

2.4 Operational safety

Risk of injury!

- The device may only be operated if it is in proper technical condition free from errors and faults.
- The operator is responsible for ensuring that the device is in good working order.

Hazardous area

To eliminate danger to persons or the facility when the device is used in the hazardous area (e.g. explosion protection):

- Check the nameplate to verify whether the ordered device can be used as intended in the hazardous area.
- Observe the specifications in the separate supplementary documentation, which is an integral part of these Operating Instructions.

2.5 Product safety

This device is designed to meet state-of-the-art safety requirements and good engineering practice, has been tested and left the factory in a condition in which it is safe to operate. It meets the general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

3 Product description

The Nivotester FTR525, as an associated apparatus, is used for parametrisation and evaluation of the Soliwave FQR57/FDR57 microwave barrier.

For detailed information regarding protecting the Soliwave microwave barrier:
See the Technical Information TIO1330F/97/EN and the Operating Instructions BA01803F/97/A2.

3.1 Product design

All variants of the Nivotester FTR525 are mechanically identical ($\rightarrow 6$ on page 14), they only differ regarding type and number of signal outputs and consequently the number of terminal block connectors.

图2 Design of the measurement system
A Power supply and signal outputs

4 Incoming acceptance and product identification

4.1 Incoming acceptance

Is the order code on the delivery note (1) identical to the order code on the product sticker (2)?

Are the goods undamaged? Do the data on the nameplate correspond to the order specifications and the delivery note?

9 If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.

4.2 Product identification

The following options are available for identification of the device:

- Using the nameplate specifications
- Using the order code with a breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in W@M Device Viewer
(www.endress.com/deviceviewer):
All information about the device is displayed.
For an overview of the scope of the Technical Documentation provided, refer to the following:
- The "Documentation" chapters
- The W@M Device Viewer: enter the serial number from the nameplate (www.endress.com/deviceviewer)

4.3 Nameplate

- 3 Example of a nameplate

1 Order code
2 Extended order code
3 Serial number
4 Electrical connection information (inputs and outputs, supply voltage, etc.)
5 Firmware
6 Degree of protection
7 Text for approval (optional)
8 Ambient temperature range
9 Date of manufacture: Year-month
10 2-D matrix code
11 CE approval
12 Associated Operating Instructions
13 Place of manufacture

4.4 Storage and transportation

Please note the following points:

- Store in the original packaging to ensure protection from shock.
- The permitted storage temperature is -40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$; storage in the marginal temperature ranges is only permitted for a limited time (maximum 48 hours).

4.5 Disposal of packaging

The carton is environmentally compatible and 100% recyclable in accordance with the European packaging directive 2004/12/EC (recyclability is confirmed via the affixed RESY symbol).

5 Installation

5.1 Installation conditions

NOTICE

Reduction in the operating life of the display due to high temperatures

- Ensure sufficient cooling of the device in order to prevent the build-up of heat.
- Do not operate the device for long periods of time in the upper marginal temperature range.

The process transmitter with control unit is designed for use on the top-hat rail (IEC 60715 TH35). Connections and outputs are fitted on the top and bottom of the device. Inputs are located on the top, while outputs and the connection for power supply are located on the bottom. Lines are connected via labeled terminals.

5.1.1 Operating temperature range

The maximum operating temperature range is -20 to $60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$ when installed in the open; this range is reduced accordingly when installed in enclosed housings or in series.

NOTICE

If the orientation is not vertical $(\rightarrow 5.1 .2)$, the maximum operating temperature is reduced to $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.

$-20 \ldots+50^{\circ} \mathrm{C}$
$\left(-4 \ldots+122^{\circ} \mathrm{F}\right)$

- 4 Operating temperature ranges depending on installation

5.1.2 Orientation

The orientation can be in any position.

NOTICE

If the orientation is not vertical, the maximum operating temperature is reduced.
\rightarrow 5.1.1

5.1.3 Installation dimensions

Observe the width to be provided for the device of 45 mm (1.77 in).

- 5 Installation dimensions

5.2 Installing the device

Installation procedure:

1. Slide the upper top-hat rail clip upwards and the lower clip downwards until they reach the points at which they click into place.
2. Position the device on the top-hat rail from the front.
3. Slide the two top-hat rail clips together again until they click into place.

To remove the device, slide the top-hat rail clips upwards or downwards, as applicable (see 1.), and remove the device from the top-hat rail. It is also sufficient to open one of the two top-hat rail clips and tilt the device accordingly in order to remove it from the top-hat rail.

- 6 Installation of the FTR525

5.3 Post-installation check

\square Is the top-hat rail clicked into place?
\square Is the device positioned securely on the top-hat rail?
\square Are all plug-in terminals securely clicked into place?
\square Are the temperature limits complied with at the installation location?

6 Electrical connection

A WARNING

Danger due to electric voltage

- The entire process of electrical connection must be carried out while the system is deenergized.
- Before commissioning, compare the supply voltage to the specifications on the nameplate to ensure that they match.
- Provide a suitable switch or power-circuit breaker in accordance with IEC/EN61010 within the building installation. This switch must be fitted near to the device (within easy reach) and must be marked as a circuit breaker.
- An overcurrent protection device (rated current of $\leq 10 \mathrm{~A}$) is required for the power cable.

NOTICE

Electrical safety is compromised by an incorrect connection!

- Have electrical connection work carried out by appropriately trained specialists only.
- Observe applicable national installation regulations.
- Comply with local workplace safety regulations.

1 - Note the terminal designation on the side of the device.

- Mixed connection of safety extra low voltage and voltages that are dangerous to touch to the relay/SSR is permitted.
[i] In the case of a device for use in a hazardous area:
Note the information in the Ex documentation (XA).

6.1 Connection conditions

6.1.1 Required tool

For the terminals:
(1) $0.6 \times 3.5 \mathrm{~mm}$

6.1.2 Connecting cable requirements

The connecting cables provided by the customer (power supply and output signal) and the connection lines (FTR525 to FQR57/FDR57) must meet the following requirements:

- Electrical safety in accordance with applicable national regulations
- Permitted temperature range \rightarrow 葛 13
- Power supply and signal lines: Normal installation cable
- Connection line: Normal installation line, at least a three-wire cable
- Line cross-sections: 0.2 to $2.5 \mathrm{~mm}^{2}$ (24 to 12 AWG)
- The terminals of the FTR525 are only approved for connecting fixed lines. The operator must ensure adequate strain relief.

6.2 Connecting the device

包 7 Terminal assignment of the microwave barrier with process transmitter

A Power supply

B Switch output 1 (Relay or SSR)
C Switch output 2 (Relay or SSR, optional)
D Current output
E Switch output (open collector)

6.2.1 Connecting the power supply

㘠8 Terminal for the power supply

	Terminal assignment
L/+	Power supply: - 24 to 230 V DC ($-15 \% /+10 \%)$ - 42 to 230 V AC ($-15 \% /+10 \%), 50 / 60 \mathrm{~Hz}$
L/+	
N/-	
N/-	

6.2.2 Connecting the microwave barrier

- Terminals for the microwave barrier FQR57/FDR57

Terminal assignment FTR525		Terminal assignment FQR57/FDR57
6	$(+)$	1
7	$(-)$	2
8	-	3

These two plug-in terminals (connection with the FQR57 transmitter and FDR57 transceiver of the Soliwave microwave barrier) can be in any position.

6.2.3 Connecting the signal lines

10 Terminals for the signal outputs

Terminal assignment			FTR525 ordering feature			
			-*1*	-*2*	-*3*	-*4*
I+ I-		Current output - 4 ... 20 mA (passive) - max. 22 mA - max. 28 V DC	\checkmark	\checkmark	\checkmark	\checkmark
C+ C-		Open Collector - max. 28 V DC - max. 200 mA	\checkmark	\checkmark	\checkmark	\checkmark
3 4 5	$\square^{\text {No }} \mathrm{NO}(3 / 15)$	Relay 1 - max. 250 V AC / 40 V DC - max. 2 A	\checkmark	\checkmark	x	x
15 16 17	—NC (5/17)	Relay 2 - max. 250 V AC / 40 V DC - max. 2 A	x	\checkmark	x	x
3 4		SSR 1 max. 30 V AC / 40 V DC max. 400 mA	x	x	\checkmark	\checkmark
15 16		SSR 2 max. 30 V AC / 40 V DC max. 400 mA	x	x	x	\checkmark

6.3 Post-connection check

\square Is the device or line damaged (visual inspection)?
\square Does the supply voltage match the specifications on the nameplate?
\square Are all terminals securely clicked into place in their correct slots? Is the coding on the individual terminals correct?
\square Are the cables installed with strain relief?
\square Are the supply voltage and signal cables connected correctly?

$7 \quad$ Operating options

图11 Display and operating options
1 Supply voltage LED（green）
2 Fault／alarm LED（red）
3 Relay／SSR output 1 LED（yellow）
4 Relay／SSR output 2 LED（yellow），optional
5 In－plant interface
6 Operating keys
7 Display

7．1 Overview of operating options

The device is operated via the three buttons integrated into the front．

Key	Meaning
E	－Open the configuration menu －In navigation mode：Open the function／function group －In editing mode： －Switch to the next character －Apply the Input
\square	－In navigation mode：Switch to the next function／function group down －In editing mode：Change the displayed character（9，8，7，etc．，Z，Y，X，etc．） －In the measured value display：Switch to the minimum／maximum value display $\rightarrow \text { 圈 } 25$
\pm	－In navigation mode：Switch to the next function／function group up －In editing mode：Change the displayed character（ $0,1,2$ ，etc．，A，B，C，etc．） －In the measured value display：Switch to the minimum／maximum value display $\rightarrow \text { 圈 } 25$
$\stackrel{\mathrm{ESC}_{7}}{\square++}$	－In navigation mode： －Exits a function and returns to the associated function group －Exits a function group and returns to the higher－order function group －Press and hold（min． 1 second）：Returns to the measured value display regardless of the current position －In editing mode：Exits editing mode without saving changes

NOTICE

Settings for protection against unauthorised access

$$
\rightarrow \text { 屏42 }
$$

7.2 Structure and function of the operating menu

7.2.1 Structure of the operating menu

0000

- 12 Schematic structure of the operating menu

NOTICE

Additional functions or function groups are not available under every function (for an overview of all available functions \rightarrow 畨61).

7.2.2 Operating philosophy

Certain parts of the operating menu are assigned to assorted users, each has specific tasks within the life cycle of the device.
$\left.\begin{array}{|c|c|}\hline \text { User } & \text { Scope of functions } \\ \hline \text { Operator } & \begin{array}{l}\text { - The Operator is generally assigned to the usage situation "operation". } \\ \text { - The Operator of the facility and therefor of the E+H device mostly checks the } \\ \text { measured values and controls the process. } \\ \text { - Alterations to set values (especially configurations regarding the measuring } \\ \text { path) by the Operator are not desired. Specific adjustments necessary for safe } \\ \text { operation, like a change of language or display mode are however possible for } \\ \text { the Operator. } \\ \text { - In case of a malfunction, the Operator usually does not take action himself, but } \\ \text { passes the information regarding the diagnostic incident on to the Maintainer. }\end{array} \\ \hline \text { Maintainer } & \begin{array}{l}\text { - The Maintainer is generally assigned to the usage situation "configuration" } \\ \text { (comissioning and process adjustments). } \\ \text { - Maintainers work with the devices for the whole life cycle and have a well-founded } \\ \text { technology and process knowledge. }\end{array} \\ \text { - The Maintainer is allowed to configure and change most parameters for } \\ \text { commissioning, process adaption and optimisation. } \\ \text { - The Maintainer solves malfunctions, in more difficult cases with the help of the } \\ \text { Expert. }\end{array}\right\}$

7.2.3 Access concept

Access is possible for three users with corresponding authorisation:

- Maintainer (Default on delivery)
- Operator (is created by an entered unlock parameter by the maintainer)
- Expert (always available, fixed unlock parameter)

The following overview shows the options of the maintainer:

User	Unlock parameter	Access right
Maintainer	without	• Write access to all standard functions • Read access to all device data • Service functions are not visible
Maintainer	Expert	Write access to all functions
Maintainer	ABCD (created by maintainer)	• No change of the access - Creates the user operator
Maintainer	\# ABCD	Downgrading to operator

The following overview shows the options of the operator, if this user was created by the maintainer:

User	Unlock parameter	Access right
Operator	without	• Read access to all standard functions • Write access to selected functions • Service functions are not visible
Operator	ABCD	• Write access to all standard functions • Read access to all device data •Service functions are not visible
Operator	Expert	No change of the access, because the unlock parameter from maintainer (ABCD) must be entered first

The following overview shows the options of the expert:

User	Unlock parameter	Access right
Expert	Expert	Write access to all functions
Expert	\# Expert	Downgrading to maintainer
Expert	\# Expert \& ABCD	Downgrading to operator

NOTICE

- ABCD represents an alphanumeric unlock parameter of 4 to 16 digits.
- The access rights are shown in the appendix. \rightarrow 遒61
- The lock symbol also appears without key lock, if the function chosen cannot be parameterised with the current unlock parameter and if the function chosen is just a display function.

7.3 Access to the operating menu via the local display

7.3.1 Operational display (initialization)

2 13 Initialization display
1 Dot matrix display for Tag, bar graph, unit, switch point, etc.
2 Measuring channel display: $1 M=$ limit level detection; $2 M=$ bulk flow detection
3 Measured value or function/function group number display
4 Operation lock display
5 Minimum/maximum value display

7.3.2 Measured value display

2 14 Measured value display
1 Relay/SSR 2 switch points display
2 Measured value bar graph display
3 Numerical measured value display
4 Measured value unit display
5 Relay/SSR 1 switch points display
Depending on the setting, the measured value display will display either the measured value of the first measuring channel (1M), the measured value of the second measuring channel (2M) or an alternating display of the measured values of both measuring channels (1M/2M).
Example: Bar graph of $1 \mathrm{M} / 2 \mathrm{M}$ alternating

NOTICE

Overview of all available display options \rightarrow 娄37

7.3.3 Function/function group display

图 15 Function (groups) display
1 Main function group symbol
2 Reference to lower-order functions or function groups
3 Function/function group number
4 Reference to additional functions/function groups or selection options:
Δ Additional function/function group or selection option, previous

- Additional function/function group or selection option, next

5 Function/function group designation
Example: Switching from the measured value display to function 2111 "Automatic setup"

$\rightarrow \Delta$ Application

NOTICE

Overview of all available functions
\rightarrow 酋61

7.3.4 Minimum/maximum value display

\oplus

\oplus

The following applies for the display of the minimum/maximum value:

- After \boxplus is pressed, the measured value display switches to the display for the minimum value, and pressing this button again will switch to the display for the maximum value (in reverse order in the case of \square).
- In the case of an alternating display between measuring channel 1 (1M) and measuring channel $2(2 \mathrm{M})$, this display will alternate as well.
- The minimum/maximum values are determined and saved every 15 minutes, and the previous values are overwritten.

7.3.5 Dot matrix display

In addition to the display options for the dot matrix display illustrated in the previous sections, it can also be used for inputting the function parameters.

Example: Alphanumeric input of a tag

The input is carried out by selecting one of the following characters with \square or \square at the flashing position:

- Numbers 0-9
- Letters a-z, A-Z
- Special characters + - * / \% ${ }^{\circ} 23 \mu$. , ; : ! ?_ \# \$" () ~

In addition, the following symbols are used in editing mode:

- \leftarrow (skip left)
- K (skip left and delete character)
- \checkmark (Enter: Apply, end input at this point)
- \boldsymbol{x} (Cancel editing mode)

The digits 0-9 and the decimal point are available for entering numbers.
In addition to functions with free text or number input, there are also functions with multiple selection options. Pressing \square (scroll downwards) and \square (scroll upwards) selects the next or previous selection option respectively, and pressing Ξ applies the selected option.

Example: Selecting the assignment of switching contact 1

\downarrow / 个 -

Failure

NOTICE

- During input (free text, numbers or selection option), the digit or character being entered or the selected option flashes.
- After a faulty input, the note "Invalid input" appears for about 3 seconds, followed by a jump back to the input mode of the last function.

7.3.6 Error display

Details of the error display
\rightarrow 畨47

8 Commissioning

8.1 Function check

Make sure that the post-installation and post-connection check has been carried out before you commission your measuring point:

- "Post-installation check" checklist (\rightarrow 譄15)- "Post-connection check" checklist (\rightarrow 酋19)

After the supply voltage has been applied, the green LED lights up and the display jumps to the measured value display after initialization.
The first time the device is commissioned, you can program the setup in accordance with the description of these Brief Operating Instructions available in the following sections.

8.2 Switching on the measuring device

The Nivotester FTR525 is powered up by connecting the supply voltage. The local display automatically switches from the start-up display to the measured value display after successfully starting up.

Initialisation of the connected FDR57
$\downarrow 7$ seconds

Standard measured value display (according to the settings or factory settings)

8.3 Setting the operating language

The operating language is set in function 3510; English (factory setting) and German are available for selection as standard.

Other operating languages as a replacement for German are available on request.

8.4 Configuring the measuring device

Configuration includes application-specific settings (such as basic adjustment), assignment and the behavior of the outputs (such as switch-on and switch-off points) as well as the behavior of the display (such as the operating language and display mode).
The following sub-sections illustrate the corresponding configuration options.

NOTICE

- The numbers assigned to the functions and function groups are added in brackets for easier navigation in the following sub-sections.
- Overview of all available functions and factory settings \rightarrow 圈61

8.4.1 Adjustments to the application

The Soliwave FQR57/FDR57 microwave barrier must be adjusted to suit the application for commissioning; the following functions of the application main function group (2000) can be used for this.
[i] Details of the Soliwave FQR57/FDR57 microwave barrier: Technical Information TIO1330F/97/EN and Operating Instructions BA01804F/97/A2

8.4.1.1 Automatic setup of level limit detection

Application
2000
:---:
2100
:---:
2110
:---:
2111

Automatic setup is carried out with either a free (1) or a covered (2) path; the option selected for this corresponds to the state of the path.

Options: "Free path", "Covered path"

- 16 Setup conditions of the limit detection

NOTICE

The following manual adjustment functions can be used to carry out fine adjustment of the microwave barrier or to suit changing application conditions.

8.4.1.2 Manual adjustment lower limit (LL) level limit detection

Application
2000
:---:
2100
:---:
2110
:---:
2112

This function can be used to change the lower limit of the set detection range using \boxplus (for reducing the set detection range 0 to 100%) or \square (for increasing the set detection range 0 to 100 \%).
To assist with adjustment, the current measured value is shown alongside the set detection range.

Example：

17 Manual adjustment lower limit（LL）level limit detection display with examples
1 Set detection range（ $=0-100 \%$ of signal output）
2 Lower limit（adjustable using this function）
3 Percentage value for the lower limit relative to the maximum possible detection range
4 Current measured value
The microwave barrier is optimally adjusted to match the application when the lower detection limit（function 2112）corresponds to the minimum signal strength and the upper detection limit（function 2113）corresponds to the maximum signal strength．

图 18 Optimal adjustment
Procedure for optimal adjustment：
1．Manually adjust the lower limit to match the application－specific minimum measured value．
2．Manually adjust the upper limit（function 2113）to match the application－specific maximum measured value．

NOTICE

The detection range can also be set to be lower or higher，for example if a turndown of the signal output is desired．

8．4．1．3 Manual adjustment upper limit（UL）level limit detection

Application
2000
:---:
2100
:---:
2110
:---:
2113

This function can be used to change the upper limit of the set detection range using $⿴ 囗$ （for increasing the set detection range 0 to 100% ）or \square（for reducing the set detection range 0 to 100% ）．To assist with adjustment，the current measured value is shown alongside the set detection range（see example function 2112）．

Q19 Manual adjustment upper limit (UL)
1 Current measured value
2 Set detection range ($=0-100 \%$ of signal output)
3 Percentage value for the upper limit relative to the maximum possible detection range
4 Upper limit (adjustable using this function)

8.4.1.4 Level limit detection damping

It is possible, for instance in the case of very turbulent processes, to steady the measuring signal. To do so, a time can be set over which the measured values are averaged.
Options: 100 ms to 20 s , Off

NOTICE

Setting the damping results in a longer reaction time.

8.4.1.5 Automatic setup of motion detection

Application
2000
:---:
2100
:---:
2120
:---:
2121

Automatic setup is carried out with movement of bulk solids either present or not present (in front of the FDR57 transceiver); the option selected for this corresponds to the state of the bulk flow.
Options: "With movement", "Without movement"

20 Setup conditions of the motion detection

NOTICE

The following manual adjustment functions can be used to carry out fine adjustment of the microwave barrier or to suit changing application conditions.

8.4.1.6 Manual adjustment lower limit (LL) motion detection

Application
2000
:---:
2100
:---:
2120
:---:
2122

This function can be used to change the lower limit of the set detection range of the motion detection (function $2112 \rightarrow$ 屏28).

8．4．1．7 Manual adjustment upper limit（UL）motion detection

Application
2000
:---:
2100
:---:
2120
:---:
2123

This function can be used to change the upper limit of the set detection range of the motion detection（function $2113 \rightarrow$ 曾29）．

8．4．1．8 Movement detection damping

Application
2000
:---:
2100
:---:
2120
:---:
2124

This function can be used to enter a damping of the movement detection（function 2114 \rightarrow 曾30）。

8．4．1．9 Parallel mode

Application
2000
:---:
2100
:---:
2130

In order to prevent mutual interference from multiple microwave barriers operated in parallel，up to five different channels can be set．
Options：＂Channel 1＂to＂Channel 5＂

21 Parallel mode of Soliwave FQR57／FDR57
1 －For details regarding the Soliwave microwave barriers，please see the associated Technical Information TIO1330F／97／EN and Operating Instructions BA01804F／97／A2．
－It is not necessary to carry out the channel setting again after changing the FQR57／ FDR57 devices，as the selected channel is automatically transmitted from the FTR525 to the FQR57 transmitter and the FDR57 transceiver．

8.4.2 Output adjustments

The following functions are used to adjust the signal outputs, among others the assignment and the behavior of the relay/SSR and current outputs.

Example: Backlog monitoring

A typical application for microwave barriers with integrated bulk flow detection is the monitoring of shafts, chutes or similar regarding material flow and backlog. Continuous material transport is detected by the transceiver FDR57. In combination with the signal of the microwave barrier, it is possible to detect a disruption in material flow or backlog.

(22 Example of combined limit and motion detection

In this example featuring relay outputs, switching contact 1 (2210) is assigned to the limit level detection (1M) and switching contact $2(2220)$ is assigned to the bulk flow detection (2M), minimum safety was chosen for both switching functions (2411+2421).

This leads to the following conditions at the signal outputs:

Pos.	Condition	Limit	Switch. outp. 1 (3 NO - 4 CC)	Bulk flow	Switch. outp. 2 (15 NO - 16 CC)
1	Continuous bulk flow	\square	\square	$\|\uparrow\|$	\square
2	Bulk flow torn-off	\square	\square	$\|\uparrow\|$	\square
3	Backlog	\square	\square	$\|\uparrow\|$	\square

8.4.2.1 Switching contact 1 assignment

Application
2000
:---:
2200
:---:
2210

This function is used to assign switching contact 1 (relay or SSR) to measuring channel 1 (limit, 1 M), measuring channel 2 (motion, 2 M) or the fault state.
Options: "Limit (1M)", "Motion (2M)", "Fault"

NOTICE

The option for the second measuring channel (bulk flow detection, 2 M) is only available for the corresponding device versions.

8.4.2.2 Switching contact 2 assignment

Application
2000
:---:
2200
:---:
2220

This function is used to assign switching contact 2 (relay or SSR) to measuring channel 1 (limit, 1 M), measuring channel 2 (motion, 2 M) or the fault state.
Options: "Limit (1M)", "Motion (2M)", "Fault"

NOTICE

- The switching output 2 is only available for the corresponding device versions.
- The option for the second measuring channel (bulk flow detection, 2 M) is only available for the corresponding device versions.

8.4.2.3 Current output assignment

Application
2000
:---:
2200
:---:
2230

This function is used to assign the current output to measuring channel 1 (limit, 1M) or measuring channel 2 (motion, 2M).
Options: "Limit (1M)", "Motion (2M)"

NOTICE

The option for the second measuring channel (bulk flow detection, 2 M) is only available for the corresponding device versions.

8.4.2.4 Current output mode

This function can be used to switch on output magnify. For this function, a small segment of the 0-100 \% detection range is shown on the current output of 4-20 mA.
Options: "Standard", "Magnify"

-23 Current output mode

8.4.2.5 4 mA value of the magnify

Application
2000
:---:
2300
:---:
2320

This function is used to enter the percentage value for the lower limit (4 mA) while the magnify is enabled (function 2310).
Options: 0 to 100 \%

8.4.2.6 20 mA value of the magnify

Application
2000
:---:
2300
:---:
2330

This function is used to enter the percentage value for the upper limit (20 mA) while the magnify is enabled (function 2310).
Options: 0 to 100 \%

NOTICE

The 4 mA value (function 2310) must always be lower than the 20 mA value; if it is not, an error message is displayed.

8.4.2.7 Current output in failure mode

Application
2000
:---:
2300
:---:
2340

This function is used to define the failure mode of the current output.
Options: "MIN (<4mA)", "MAX (>20mA)", "Fixed value"

24 Behavior of the current output in failure mode

8.4.2.8 Fixed value for the current output in the event of an error

Application
2000
:---:
2300
:---:
2350

This function is used to enter the current value to be put out in the event of an error while "Fixed value" is selected in function 2310.
Options: 3.6 to 22.0 mA

8.4.2.9 Switching function switching output 1

Application
2000
:---:
2400
:---:
2410
:---:
2411

This function is used to define the switching function of signal output 1 (relay or SSR). Options: "Min.safety", "Max.safety"

8.4.2.10 Switch-on point switching output 1

Application
2000
:---:
2400
:---:
2410
:---:
2412

In this function the switching point of signal output 1, above which the switching output is activated, is defined. The right switching point flashes and can be moved by \square (lower) and \oplus (higher) accordingly.
Options: 0 to 100 \%

国25 Switch points of output 1

8.4.2.11 Switch-off point switching output 1

Application
2000
:---:
2400
:---:
2410
:---:
2413

In this function the switching point of signal output 1, below which the switching output is deactivated, is defined. The left switching point flashes and can be moved by \square (lower) and \oplus (higher) accordingly.
Options: 0 to 100 \%

NOTICE

The maximum switch-off point is limited to the value of the switch-on point (function 2412), the switching hysteresis is therefor zero.

8.4.2.12 Switch-on delay switching output 1

Application
2000
:---:
2400
:---:
2410
:---:
2414

This function can be used to define a switch-on delay for switching output 1 . While this delay is enabled, the measured value must be above the switch-on point (function 2412) for at least the set time before the switching output is activated.
Options: 100 ms to 20 s , Off

Example: Switch delays of limit detection

The following diagram shows the behavior of the switching output with activated switch-on and switch-off delay (function 2415), depending on additional adjustments (assignment outputs in function group 2200, switching outputs in function group 2400).

26 Switch-on and switch-off delays

8.4.2.13 Switch-off delay switching output 1

Application

2000 \rightarrow\begin{tabular}{c}
Switching outputs

2400

\rightarrow

\hline | Switching output 1 |
| :---: |
| 2410 |

\hline | Switch-off delay output1 |
| :---: |
| 2415 |

\hline
\end{tabular}

This function can be used to define a switch-off delay $\mathrm{T}_{\text {OFF }}$ for switching output 1 . While this delay is enabled, the measured value must be below the switch-off point (function 2413) for at least the set time before the switching output is deactivated (see example function 2414).
Options: 100 ms to 20 s , Off

8.4.2.14 Switching function switching output 2

\(\left.$$
\begin{array}{|c|}\hline \begin{array}{c}\text { Application } \\
2000\end{array} \\
\hline \begin{array}{c}\text { Switching outputs } \\
2400\end{array}\end{array}
$$ \rightarrow \begin{array}{|c|}\hline Switching output 2

2420\end{array}\right) \rightarrow\)| Switching function output 2 |
| :---: |
| 2421 |

This function is used to define the switching function of signal output 2 (relay or SSR, function $2411 \rightarrow$ 置35) .

NOTICE

Function group 2420 for switching output 2 is only available for device versions with two switching outputs.

8.4.2.15 Switch-on point switching output 2

Application
2000
:---:
:---:
Switch-on point output 2 2422

In this function the switching point of switching output 2, below which the switching output is activated, is defined (function $2412 \rightarrow$ 圈35).

8．4．2．16 Switch－off point switching output 2

In this function the switching point of switching output 2，below which the switching output is deactivated，is defined（function $2413 \rightarrow$ 酋35）．

8．4．2．17 Switch－on delay switching output 2

Application
2000
:---:
2400
:---:
2420
:---:
2424

This function can be used to define a switch－on delay T_{ON} for switching output 1 （function $2414 \rightarrow$ 䍖36）。

8．4．2．18 Switch－off delay switching output 2

Application
2000
:---:
2400
:---:
2420
:---:
2425

This function can be used to define a switch－off delay $\mathrm{T}_{\text {OFF }}$ for switching output 1 （function $2415 \rightarrow$ 䍙36）

8．4．3 Adjustments to the display

The following functions can be used to configure settings for the display such as the display mode and the language．

8．4．3．1 Tag

This function can be used to enter the name for the measuring point（Tag）．This name is displayed in the measured value display depending on the selected display mode． Options：16－character free text input（ \rightarrow 圈25）。

8．4．3．2 Language

System
3000
:---:
3500
:---:
3510

This function is used to select the language for the FTR525．
Options：＂English＂，＂German＂

NOTICE

Other languages are available on request；these will replace the＂German＂language option．

8．4．3．3 Display mode

System

3000 \rightarrow\begin{tabular}{c}
Display

3500

\rightarrow

Display mode

3520
\end{tabular}

This function is used to select the display mode that defines how the measured values of the maximum of two measuring channels are displayed．
Options：＂\％limit（1M）＂，＂Bargraph limit（1M）＂，＂Tag limit（1M）＂，＂\％motion（2M）＂＊， ＂Bargraph motion（2M）＂＊，＂Tag motion（2M）＂＊，＂Bargraph alternat．（1M／2M）＂＊， ＂Tag alternating（1M／2M）＂＊

NOTICE

The selection options marked with a * are only available for the FTR525 with optional bulk flow detection.

| Option | Description |
| :--- | :--- | :--- |
| Bargraph alternating (1M/2M)* | The percentage values and associated bargraph for |
| measuring channel 1 (1M) and measuring channel 2 (2M) | |
| are displayed in an alternating display (display duration | |
| approx. 5 seconds each time). | |

8.4.3.4 Back to home

This function is used to set the length of time the system will wait following the last time a button is pressed before the display switches automatically back to the measured value display.
Options: 3 to 9999 seconds

8.4.3.5 Format display

This function is used to check the display, all segments are activated for around 2 seconds. Options: "On", "Abort"

8.4.3.6 Contrast setting

System

3000 \rightarrow\begin{tabular}{c}
Display

3500

\rightarrow

Contrast

3550
\end{tabular}

This function is used to set the display contrast.
Options: 1 (low contrast) to 7 (high contrast)

8．4．3．7 Brightness setting

System

3000 \rightarrow\begin{tabular}{c}
Display

3500

\rightarrow

Brightness

3560
\end{tabular}

This function is used to set the display brightness．
Options： 1 （low brightness）to 7 （high brightness）

8．5 Configuration management

Following commissioning of the microwave barrier，it is possible to save the current device configuration of the FTR525 or restore an existing device configuration，using the following functions．In total three configurations can be saved and restored independently of each other．

8．5．1 Save user settings

System

3000 \rightarrow\begin{tabular}{c}
Management

3100

\rightarrow

Device management

3110

\rightarrow

Save user settings

3112
\end{tabular}

This function can be used to save up to three separate sets of user settings．
Options：＂User settings 1＂to＂User settings 3＂
We recommend that users also separately make a note of their device settings（for example，in order to restore them following a technical failure）．The＂User－specific settings＂form（ \rightarrow 酋60）can be used for this．

8．5．2 Device reset

System
3000
:---:
3100
:---:
3110
:---:
3113

This function can be used to restore the saved user settings or perform a factory reset． Options：＂Factory reset＂，＂User reset 1＂to＂User reset 3＂

NOTICE

－After a successful reset，a corresponding note is displayed for about 5 seconds．
－An overview of all factory settings that will be loaded following a factory reset can be found in the appendix（ \rightarrow 曾61）。
－Saved user settings are not deleted following a factory reset．

8．6 Simulation

The simulation allows to simulate various measured values in the process as well as the device alarm behavior，without any real level limit or movement detection，and to check subsequent signalling chains（for example the switching－off of a screw conveyor upon reaching minimum fill level）．

NOTICE

－An active simulation is stopped by deactivation as well as by a reset or by cutting off the power supply．
－With active simulation and a return to operation display，the error＂Simulation＂is shown （see Diagnostics and troubleshooting \rightarrow 曾47）．

8.6.1 Simulation mode

Diagnose
1000
:---:
1700
:---:
1710

This function is used to activate or deactivate the different simulation modes (measured values and signal outputs).
Options: "Off", "Measurement limit 0-100\%", "Measurement motion 0-100\%",
"Current output", "Switching contact 1", "Switching contact 2", "Failure contact"

8.6.2 Simulation value

Diagnose 1000
Simulation 1700
Simulation value 1720

This function is used to enter corresponding simulation values for the selected simulation mode (\rightarrow 層41) 。
Options: Measurement limit 0 to 100%, measurement motion 0 to 100%, current output 3.6 to 22.0 mA , contact 3-4 opened, contact 3-4 closed, contact 15-16 opened, contact 15-16 closed, failure, no failure

Simulation	Simulation value	Beschreibung
Measurement limit 0-100\%	Measurement limit 0 to 100 \%	- A corresponding measurement is simulated by pressing \boxplus (higher) and \square (lower). - All signal outputs follow the simulated value according to the settings.
Measurement motion 0-100\%	Measurement motion 0 to 100 \%	
Current output	Current output 3.6 to 22.0 mA	- A corresponding current output value is simulated by pressing \boxplus (higher) and \square (lower). - All other outputs follow the original settings.
Switching contact 1	- Contact 3-4 opened - Contact 3-4 closed	- Contact 3-4 of switching contact 1 is alternately opened or closed by pressing \boxplus or \square. - All other outputs follow the original settings.
Switching contact 2	- Contactt 15-16 opened - Contact 15-16 closed	- Contact 15-16 of switching contact 2 is alternately opened or closed by pressing \boxplus or \square. - All other outputs follow the original settings. - This simulation is only available on FTR525 with two switching outputs (relay or SSR).
Failure contact	- No failure - Failure	- The failure contact (C+/C-) is alternately opened or closed by pressing \boxplus or \boxminus. - All other outputs follow the original settings.
Off		- The simulation is deactivated. - All other outputs follow the original settings.

8．7 Protecting settings from unauthorised access

The following means guard against unauthorised access of the device configuration after commissioning：
－Write protection by key lock
－Write protection by change of user

8．7．1 Key lock

By pressing the key 国 for a minimum of 3 seconds，the key lock is activated，and the note ＂Key lock on＂appears for about one second．
Now the FTR525 can no longer be operated by the keys，any attempt is followed by the note＂Key locked＂．
Only after pressing the key $⿷$ again for at least 3 seconds，the lock is deactivated， followed by the note＂Key lock off＇．

8．7．2 User change

Upon delivery of the FTR525 or after a factory reset，the users Maintainer and Expert are defined，the additional Operator with reduced access rights must be actively established by the user．

The following functions explain the write protection by user change．

NOTICE

－Details about this access concept
\rightarrow 道22
－Overview of all functions and their access rights
\rightarrow 酋61

8．7．2．1 Access rights

System

3000 \rightarrow\begin{tabular}{c}
Management

3100

\rightarrow

User management

3120

\rightarrow

Access rights

3121
\end{tabular}

In this function，the current access rights can be displayed．The rights depend on the unlock parameter which is entered in the following function．

8．7．2．2 Enter unlock parameter

System
3000
:---:
3100
:---:
3120
:---:
3122

Enter an unlock parameter in this function，to make further adjustments to the FTR525．
Option：A ．．．Z， 0 ．．． 9 （max． 16 digits）

NOTICE

－A Maintainer can upgrade his status to Expert using the appropriate unlock parameter．
－An Operator can upgrade his status to Maintainer using the appropriate unlock parameter，the unlock parameter for the Expert cannot be used here．

8.7.2.3 Define unlock parameter

System
3000
:---:
3100
:---:
3120
:---:
3123

This function is used to define an unlock parameter to establish the new user Operator with limited access rights.
Options: A ... Z, 0 ... 9 (max. 16 digits)

NOTICE

- Only after confirmation of the unlock parameter in function 3124, the user Operator is established.
- An existing Operator can be deleted by the maintainer by entering and confirming the unlock parameter 0000.

8.7.2.4 Confirm unlock parameter

System

3000 \rightarrow\begin{tabular}{c}
Management

3100

\rightarrow

User management

3120

\rightarrow

Confirm unlock parameter

3124
\end{tabular}

This function is used to confirm the entered unlock parameter in function 3123, the Operator is now established as an additional user.
Options: A ... Z, 0 ... 9 (max. 16 digits)

NOTICE

After differing input (3123 = 3124), the note "Invalid input" appears, followed by a jump back to the input mode of the function.

9 Operation

9．1 Reading off the device locking status

The locking status of the device can be read as follows：
－Write protection via key lock（ \rightarrow 署42）
－The locking symbol 1 lights permanently on the display．
－The note＂Key locked＂occurs if pressing a key．
－Write protection by changing the user（ \rightarrow 圈42）
－In the function 3121 the current user status is displayed．
－The locking symbol iी occurs when selecting a function without access right．

9．2 Reading off measured values

The measured values can be read from the display depending on the display mode $(\rightarrow$ 酋37）

1 In the functions 2510 ＂Min／Max limit（1M）＂and 2520 ＂Min／Max motion（2M）＂，the last minimum and maximum values can be read off as well．

9．3 Analysis

The following functions can be used to analyse the settings of the measuring system， consisting of the Soliwave microwave barrier and the Nivotester FTR525．

9．3．1 Signal strength limit（1M）

Application

2000 \rightarrow\begin{tabular}{c}
Application analysis

2500

\rightarrow

Signal strength limit（1M）

2540
\end{tabular}

This function is used to display the current signal strength of the limit detection（1M） depending on the performed setup．

Example：

27 Display signal strength of limit detection（1M）
1 Set lower limit of adjustment（LL）in function $2112 \rightarrow$ 食28
2 Set detection range（ $=0-100 \%$ of signal output）
3 Percentage value of the current signal strength
4 Set upper limit of adjustment（UL）in function $2113 \rightarrow$ 署29
5 Current signal strength

Through analysis of the signal strength over a longer period of time（also in conjunction with minimum and maximum values in function 2510），the following conclusions may be drawn：

Display	Analysis
［＇${ }^{\prime}$	The limit level detection is adjusted reasonably well：
Usable detection range	－In this case，the usable detection range generally equals the preset detection range． －The current output can put out almost the whole possible range（in this case about 5.7 to 19.5 mA ）．
	The limit level detection is overdriven： －In this case，the usable detection range equals only a small portion of the preset upper detection range． －The current output can put out only a narrow upper range （in this case about 17.2 to 20.0 mA ）of the total possible range．
	The limit level detection is underdriven： －In this case，the usable detection range equals only about half of the preset lower detection range． －The current output can put out only half of the lower range （in this case about 4.0 to 12.3 mA ）of the total possible range．

In case of a substantial over－or underdrive，the boundaries of the detection range should be moved accordingly．
－Manual adjustment LL in function 2112
\rightarrow 䓪28
－Manual adjustment UL in function 2113
\rightarrow 首29

1If there is no opportunity for analysis of the signal strength over an extended period of time，minimum and maximum values can be used（ \rightarrow 䀶46）．

9．3．2 Signal strength motion（2M）

Application
2000
:---:
2500
:---:
2550

This function is used to display the current signal strength of the motion detection（2M） depending on the performed setup（function $2122 \rightarrow$ 酋 30 and function $2123 \rightarrow$譄31）。

9.4 Show data logging

Using the following functions, the minimum and maximum measured values since the last switching-on of the FTR525 can be displayed and even deleted, if so desired.

9.4.1 Min/Max limit (1M)

Application 2000
Application analysis 2500
:---:
2510

This function is used to display the logged minimum and maximum values of the limit detection (1M).

Example:

图28 Display Min/Max values of the limit detection (1M)
1 Percentage value of the current signal strength
2 Maximum percentage value of the signal strength
3 Minimum percentage value of the signal strength

9.4.2 Min/Max limit (2M)

This function is used to display the logged minimum and maximum values of the motion detection (2M) (see function 2520).

9.4.3 Reset Min/Max

Application

2000 \rightarrow\begin{tabular}{c}
Application analysis

2500

\rightarrow

Reset Min/Max

2530
\end{tabular}

This function is used to reset (clear) the logged minimum and maximum measurement values of the limit (1 M , function 2510) and motion detection (2 M , function 2520).
Options: "Reset Min/Max", "Abort"

10 Diagnostics and troubleshooting

10．1 General troubleshooting

For local display

Fault	Possible causes	Remedial action
Local display dark and no output signals	No contact between connecting cables and terminals	Check the connection of the cables and correct if necessary
	Power supply missing	Check power supply of the FTR525
	Electronics is defective	Contact service
Local display is dark，but signal output is within the valid range	Display is set too bright or too dark	Set contrast \rightarrow 原39 and／or brightness \rightarrow 曾40
	Display module is defective	Contact service
Text on local display looks unusual	Individual segments of the display are defective	$\begin{aligned} & \hline \text { Format display } \rightarrow \text { 屋39, } \\ & \text { contact service if necessary } \end{aligned}$
Text on local display appears in a foreign language and cannot be understood	Incorrect operating language is configured	Change operating language $\rightarrow \text { 葛 } 37$

For output signals

Fault	Possible causes	Remedial action
Signal output outside the valid range	Electronics is defective	Contact service
Device shows correct value on local display，but signal output is incorrect，though in the valid range	Configuration error	Check and correct parameter configuration： - Current output \rightarrow 層33 - Relay／SSR $1 \rightarrow$ 署35 - Relay／SSR $2 \rightarrow$ 圈36
Device measures incorrectly		

For access

Fault	Possible causes	Remedial action
No write access to certain parameters	Wrong or no unlock parameter entered	Enter valid unlock parameter \rightarrow 圈42
No access to all functions（lock symbol 目 lights permanently）	Key lock activated	Deactivate key lock \rightarrow 酋42

10．2 Diagnostic information via LEDs

The red fault／alert LED（ \rightarrow 圆 11 on page 20）lights up if the device detects an error，the failure contact（ $\mathrm{C}+/ \mathrm{C}-$ ）is activated．In combination with the error message（see 10．3），the specific fault can be determined．

10．3 Diagnostic information on the local display

Upon recognition of a failure，the background illumination of the local display turns from white to red．The current failure code and the chosen operating display of the respective measuring channel are shown，alternating every 2 seconds．

Example：F042－Connection FQR

国29 Example diagnostic information on the FTR525 with optional motion detection

NOTICE

－In this case the display shows 0% ，because the detection is not possible without both devices of the Soliwave microwave barrier．
－The error message cannot be acknowledged，it disappears only after solving the fault．
－Upon moving to the configuration menu，the background illumination changes back to white，the fault／alert LED stays lit．
－Overview of diagnostic information \rightarrow 图49

NOTICE

Special case simulation
－The colour of the display switches as described．
－The fault LED does not switch（except simulation of the failure contact）．
－Depending on the simulation mode，the signal outputs don＇t match the measured values and have to be regarded as invalid．

10．4 Diagnostic functions

10．4．1 Present diagnostics

This function is used to display the present error（code with short message）．

NOTICE

The error with the highest priority（lowest error code）is displayed if more than one error is present．

10．4．2 Previous diagnostics

Diagnostics
1000
:---:
1200

This function is used to display the previous error（code with short message）．

10．4．3 Erase previous diagnostics

This function is used to erase the previous logged error（code with short message）． Options：＂Keep＂，＂Erase＂

10．5 Overview of diagnostic information

Code	Help text	Remedial action
0000	No error	－
F041	Connection FDR	－Check electrical connection to the FDR57 －Check function of the FDR57，if necessary －In case of defect：contact service
F042	Connection FQR	－Check electrical connection to the FQR57 －Check function of the FQR57，if necessary －In case of defect：contact service
F043	Communication FDR	－Check function of the FDR57 －Reset device，if necessary －In case of defect：contact service
F044	Communication FQR	－Check function of the FQR57 －Reset device，if necessary －In case of defect：contact service
F261	Flash FTR	－Perform reset of the FTR525 －If the defect occurs repetitively：contact service
F262	EEPROM FTR	
F263	EEPROM FQR	－Perform reset of the FQR57 －If the defect occurs repetitively：contact service
F264	EEPROM FDR	－Perform reset of the FDR57 －If the defect occurs repetitively：contact service
F401	FTR： T ＜Min／T＞Max	－Minimum temperature on the device undercut or maximum temperature exceeded（Technical Data \rightarrow 譄57） －Ensure operating temperature range（Installation conditions \rightarrow 層13）
F402	FDR：T＜Min／T＞Max	
F403	FQR： T ＜Min／T＞Max	
C482	Simulation	－Only for information，no error －Deactivate simulation（ \rightarrow 首41）

10．6 Reset device

Reset functions of the FTR525
\rightarrow 首40

10.7 Device information

The following functions can be used to display information about device and current status.

10.7.1 Device identification

Nameplate of the Nivotester FTR525
\rightarrow 匀 3 on page 12

10.7.1.1 FTR serial number

System
3000
:---:
3200
:---:
3210

This function displays the serial number of the FTR525.

10.7.1.2 FTR order code

This function displays the order code of the FTR525.

10.7.1.3 FTR order identifier

System
3000
:---:
3200
:---:
3230

This function displays the order identifier of the FTR525.

10.7.1.4 FTR firmware version

System

3000 \rightarrow\begin{tabular}{c}
Information FTR

3200

\rightarrow

FTR firmware version

3240
\end{tabular}

This function displays the firmware version of the FTR525.

10.7.1.5 FDR serial number

System
3000
:---:
3300
:---:
3310

This function displays the serial number of the connected FDR57.

10.7.1.6 FDR order code

This function displays the order code of the connected FDR57.

10.7.1.7 FDR order identifier

System
3000
:---:
3300
:---:
3330

This function displays the order identifier of the connected FDR57.

10.7.1.8 FDR firmware version

System
3000
:---:
3300
:---:
3340

This function displays the firmware version of the connected FDR57.

10.7.1.9 FDR hardware version

System
3000
:---:
3300
:---:
3350

This function displays the hardware version of the connected FDR57.

10.7.1.10 FQR serial number

This function displays the serial number of the connected FQR57.

10.7.1.11 FQR order code

This function displays the order code of the connected FQR57.

10.7.1.12 FQR order identifier

System
3000
:---:
3400
:---:
3430

This function displays the order identifier of the connected FQR57.

10.7.1.13 FQR firmware version

This function displays the firmware version of the connected FQR57.

10.7.1.14 FQR hardware version

System
3000
:---:
3400
:---:
3450

This function displays the hardware version of the connected FQR57.

10.7.2 Device status

10.7.2.1 Operation time

This function displays the operation time (in hours) of the FTR525 since first power-on.

10.7.2.2 Current temperature of the FTR525

Diagnostics
1000
:---:
1400
:---:
1410

This function displays the current temperature at the FTR525.
1 - This and the following functions can be used to analyse temperatures on the devices of the measuring system with current error codes F401 to F403 (\rightarrow娄49) 。

- The minimum and maximum values displayed in the following functions are saved since first power-on. They only change if the existing values are undercut or exceeded.

10.7.2.3 Minimum temperature of the FTR525

Diagnostics
1000
:---:
1400
:---:
1420

This function displays the minimum temperature at the FTR525.

10.7.2.4 Maximum temperature of the FTR525

Diagnostics
1000
:---:
1400
:---:
1410

This function displays the maximum temperature at the FTR525.

10.7.2.5 Current temperature of the FDR57

Diagnostics
1000
:---:
1500
:---:
1510

This function displays the current temperature at the FDR57.

10.7.2.6 Minimum temperature of the FDR57

Diagnostics
1000
:---:
1500
:---:
1520

This function displays the minimum temperature at the FDR57.

10.7.2.7 Maximum temperature of the FDR57

Diagnostics
1000
:---:
1500
:---:
1530

This function displays the maximum temperature at the FDR57.

10.7.2.8 Current temperature of the FQR57

Diagnostics
1000
:---:
1600
:---:
1610

This function displays the current temperature at the FQR57.

10.7.2.9 Minimum temperature of the FQR57

Diagnostics
1000
:---:
1600
:---:
1620

This function displays the minimum temperature at the FQR57.

10.7.2.10 Maximum temperature of the FQR57

Diagnostics
1000
:---:
1600
:---:
1630

This function displays the maximum temperature at the FQR57.

10.8 Firmware history

Release date	Firmware version	Firmware changes	Documentation
10.2017	01.00 .00	Original	BA01683F/97/EN/01.17
06.2018	01.00 .01	Software revised: - After a factory reset of a FTR525 without bulk flow detection and with two switching outputs the setting in function 2220 (Assignment of switching contact 2) is adjusted from "Fault" to "Limit (1M)".	BA01683F/97/EN/01.17
11.2018	01.00 .02	Software extension: - Enhanced functionality (internal)	BA01683F/97/EN/01.17
05.2020	01.00 .03	Software revised: Assignment of Min./Max.safety in functions 2411+2421 corrected	BA01683F/97/EN/03.20

11 Maintenance

No special maintenance work is required on the device.

12 Repairs

12.1 General notes

Repairs and modifications are carried out only by Endress+Hauser service, repairs on-site are not intended.

12.2 Endress+Hauser services

1. Contact your Endress+Hauser Sales Center for information on services, repairs and spare parts.

12.3 Return

The measuring device must be returned if it is in need of repair or a factory calibration, or if the wrong measuring device has been delivered or ordered.
To ensure safe, swift and professional device returns, please refer to the procedure and conditions for returning devices provided on the Endress+Hauser website at http://www.endress.com/support/return-material

12.4 Disposal

8

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), our products are marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Such products may not be disposed of as unsorted municipal waste and can be returned to Endress+Hauser for disposal at conditions stipulated in our General Terms and Conditions or as individually agreed.

13 Accessories

Various accessories are available for the device, and can be ordered with the device or at a later stage from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser Sales Center or on the product page of the Endress+Hauser website: www.endress.com.

| Accessory | Description
 Protective housing

 To install top-hat rail devices like the FTR525 on-site, the following pro-
 tective housing is available.
 - Order No: 52010132
 - Ingress protection: IP66
 - Material:
 - Lower housing section: fibreglass reinforced polycarbonate, grey
 - Upper housing section: polycarbonate, transparent
 - Cover screws: PA, 4 pieces, 2 of which are sealing
 - Seal: PU seal
 - Top-hat rail (EN 50022): galvanized
 - Cable entries: 5 pieces M20x1.5
 - Dimensions (width x depth x height): $180 \times 165 \times 182 \mathrm{~mm}$ |
| :--- | :--- | :--- |

14 Technical data

14.1 Input

14.1.1 Measured variable

Acquisition of measurements of the limit and optionally the motion detection of the Soliwave microwave barrier

14.1.2 Measurement cycle

250 ms

14.1.3 Galvanic isolation

Galvanic isolation among each output and the power supply

14.2 Output

14.2.1 Current output

- 4-20 mA (passive)
- max. 22 mA
- Supply voltage max. 28 V DC

14.2.2 Relay (SPDT, standard)

- Number: 1 (optional 2)
- Contact rating: 250 V AC / 40 V DC, max. 2 A
- Service life: min. 60×10^{3} (mechanical) / min. 10×10^{6} (electrical)

14.2.3 Solid-state relay (SSR, optional)

- Number: 1 (optional 2)
- Load: 30 V AC / 40 V DC, max. 400 mA

14.2.4 Switching output (open collector, only Alarm)

- Number: 1
- Load: 28 V DC, max. 200 mA

14.3 Power supply

14.3.1 Supply voltage

Wide-range power supply unit

- 24 to 230 V DC ($-15 \% /+10 \%)$
- 42 to 230 V AC ($-15 \% /+10 \%), 50 / 60 \mathrm{~Hz}$

NOTICE

- When using the public power supply, install an easyly accessible power switch in the proximity of the instrument. Mark the power switch as a disconnector for the instrument (EN/IEC 61010).
- An overcurrent protection device (rated current of $\leq 10 \mathrm{~A}$) is required for the power cable.

14.3.2 Power consumption

Max. 15 VA / 7 W

14.4 Installation

14.4.1 Installation position

Installation on top-hat rail acc. to IEC 60715

14.4.2 Installation orientation

\rightarrow 畨 13

14.5 Environment

14.5.1 Ambient temperature

NOTICE

The life-time of the display is shortened when operated in the upper temperature range

- To avoid heat accumulation, always make sure the device is sufficiently cooled.
-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$

14.5.2 Storage temperature

-40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$

14.5.3 Operation height

< 2000 m (6560 ft) above MSL

14.5.4 Degree of protection

IP20

14.5.5 Electrical safety

- Protection class II
- Overvoltage category II
- Pollution degree 2

14.5.6 Condensation

Not permitted

14.5.7 Electromagnetic compatibility (EMC)

- Interference Emission to IEC 61326, Electrical Equipment Class B
- Interference Immunity to IEC 61326, Appendix A (Industrial)

15.6 Mechanical construction

15.6.1 Design, dimensions

```
\(\rightarrow 5\) on page 14
```


15.6.2 Weight

```
max. 350 g (12.4 oz)
```


15.6.3 Material

Housing: plastic PC-GF10

15.6.4 Terminals

- Screw terminals, plug-in
- 2,5 mm ${ }^{2}$ (14 AWG)
- 0.14 to $2.5 \mathrm{~mm}^{2}$ (26 to 14 AWG)
- Torque 0.5 to 0.6 Nm (0.37 to $0.44 \mathrm{ft}-\mathrm{lbs}$)

15.7 Certificates and approvals

15.7.1 CE mark

The device meets the legal requirements of the applicable EC guidelines. These are listed in the corresponding EC Declaration of Conformity together with the standards applied. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

15.7.2 Ex approval

The process transmitter with control unit FTR525, as an associated apparatus, is only permissible exclusively for use outside of the hazardous area. The FTR525 controls the devices FQR57/FDR57 of the Soliwave microwave barrier, which are installed inside of the hazardous area. Please observe the safety notes of the separate "Safety Instructions" (XA), reference is made to this document on the nameplate.

1 The separate Safety Instructions (XA) with all information regarding explosion protection is available from the Endress+Hauser Sales Center or in the download area of the internet site www.endress.com.

15.7.3 Other standards and guidelines

- EN 60529

Degree of protection provided by enclosures (IP code)

- EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory
use

- EN/IEC 60079-0

Explosive atmospheres - Part 0: Equipment - General requirements

- EN/IEC 60079-11

Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

- EN/IEC 60079-26

Explosive atmospheres - Part 26: Equipment with Equipment Protection Level (EPL) Ga

15.8 Supplementary documentation

- Technical Information Nivotester FTR525

TIO1329F/97/EN

- Technical Information Soliwave FQR57/FDR57

TIO1330F/97/EN

- Safety Instructions Nivotester FTR525 with Soliwave FQR57/FDR57
- ATEX: XA01603F/97/A3
- IECEx: XA01604F/97/EN

16 Appendix

16.1 User-specific settings

User-specific settings

Endress+Hauser ${ }^{\text {§ }}$

People for Process Automation
The order option for Nivotester FTR525 with user-specific settings requires that all necessary parameters and options are mentioned. Whereever informations are missing, default values will be used. This completed form must be supplied with every order.

Order code: FTR525- $-\square$

2112 Manual adjustment LL (Point level detektion) \qquad \% ($0 . . .100 \%$; 30%)	2113 Manual adjustment UL (Point level detektion) \qquad \% ($0 . . .100 \%$; 80%)	2114 Damping (Point level detektion) $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ $\square 0 f f$
2122 Manual adjustment LL (Bulk flow detection) \qquad \% (0 ... 100 \%; 30 \%)	2123 Manual adjustment UL (Bulk flow detection) \qquad \% ($0 . . .100 \%$; 80 \%)	2124 Damping (Bulk flow detection) $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ $\square 0 f f$
$\begin{aligned} & \text { 2130 Parallel mode } \\ & \text { Channel } 1 \square \text { Channel } 2 \square \text { Channel } 3 \\ & \square \text { Channel } 4 \text { Channel } 5 \end{aligned}$	2210 Assignment switching contact 1 Limit (1M) Failure Motion (2M) *1	2220 Assignment switching contact 2 *1 Limit (1M) *2 Motion (2M) *3 Failure
2230 Assignment current output \square Limit (1M) \square Motion (2M) *1	2310 Current output mode Standard Magnify	23204 mA value (if $2310=$ Magnify) \qquad \% (0 ... 100 \%; 10 \%)
233020 mA value (if $2310=$ Magnify) \qquad \% ($0 . . .100 \%$; 90 \%)	2340 Failure mode \square MIN $(<4 \mathrm{~mA}) \quad \square \mathrm{MAX}(>20 \mathrm{~mA})$ \square Fixed value	2350 Fixed value (if $2340=$ Fixed value) \qquad mA (3.6 ... 22.0 mA ; 12.0 mA)
2411 Switching function output 1 \square Min.safety Max.safety	2412 Switch-on point output 1 \qquad \% ($0 . . .100 \%$; 50 \%)	2413 Switch-off point output 1 \qquad \% (0 ... 100 \%; 40 \%)
 2414 Switch-on delay output 1 $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ \square Off	2415 Switch-off delay output 1 $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ $\square 0 \mathrm{ff}$	2421 Switching function output 2 *1 \square Min.safety Max.safety
2422 Switch-on point output 2 *1 \qquad \% ($0 . . .100 \%$; 50%)	2423 Switch-off point output 2 *1 \qquad \% ($0 . . .100 \%$; 40 \%)	2424 Switch-on delay output $2{ }^{* 1}$ $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ $\square 0 f f$
2425 Switch-off delay output $2{ }^{* 1}$ $\square 100 \mathrm{~ms}$ $\square 200 \mathrm{~ms}$ $\square 300 \mathrm{~ms}$ $\square 500 \mathrm{~ms}$ $\square 1 \mathrm{~s}$ $\square 2 \mathrm{~s}$ $\square 3 \mathrm{~s}$ $\square 5 \mathrm{~s}$ $\square 10 \mathrm{~s}$ $\square 20 \mathrm{~s}$ $\square 0 f f$	3111 TAG (max. 16 digits)	3123 Define unlock parameter \qquad (4 to 16 digit, 0000) Notice: $0000=$ no unlock parameter
$\begin{array}{\|l} \text { 3510 Language } \\ \square \text { English } \end{array}$	3520 Display mode\% limit (1M)Bargraph limit (1M) *2TAG limit (1M)\% motion (2M) *1Bargraph motion (2M) *1TAG motion (2M) *1$\%$ alternating (1M/2M) *1Bargraph alternating (1M/2M) *1*3TAG alternating ($1 \mathrm{M} / 2 \mathrm{M}$) *1	3530 Back to home \qquad s (3 ... 9999; 120)
		3550 Contrast $\square 1$ $\square 2$ $\square 3$ $\square 4$ $\square 5$ $\square 6$ $\square 7$
		3560 Brightness $\square 1$ $\square 2$ $\square 3$ $\square 4$ $\square 5$ $\square 6$ $\square 7$

[^0]
16.2 Operating menu

The following table gives an overview of all functions of the operating menu and their relevant access rights.

1 - User: E - Expert, M - Maintainer, O - Operator

- Access concept \rightarrow 酋22

Function/function group - designation	Factory setting	Access rights		
		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{5} \\ & \hline \end{aligned}$		
0000 Measured value display				
1000 Diagnostics				
$\checkmark 1100$ Present diagnostics	-	E M 0	$\begin{gathered} E \\ M \\ 0 \end{gathered}$	
$\checkmark 1200$ Previous diagnostics	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
ᄂ 1300 Erase previous diagnostics	-	E M 0	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{aligned} & \hline E \\ & M \end{aligned}$
$\rightarrow 1400$ Temperature FTR				
$\checkmark 1410$ Current temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\checkmark \quad 1420$ Minimum temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\checkmark 1430$ Maximum temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	
$\checkmark 1500$ Temperature FDR				
$\checkmark \quad 1510$ Current temperature	-	E M 0	E M 0	
$\checkmark \quad 1520$ Minimum temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\checkmark \quad 1530$ Maximum temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
- 1600 Temperature FQR				
$\checkmark \quad 1610$ Current temperature	-	E M 0	E M 0	
$\checkmark 1620$ Minimum temperature	-	E M 0	$\begin{gathered} E \\ M \\ 0 \end{gathered}$	
$\checkmark \quad 1630$ Maximum temperature	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\rightarrow 1700$ Simulation				
$\rightarrow 1710$ Simulation mode	Off	E M 0	E M 0	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
$\checkmark 1720$ Simulation value	\rightarrow 筧41	E M 0	E M 0	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{M} \end{aligned}$

Function/function group - designation	Factory setting	Access rights		
				$\begin{aligned} & \text { \# 䜦 } \\ & 3 \\ & 3 \end{aligned}$
2000 Application				
$\llcorner 2100$ Sensor				
$\rightarrow \quad 2110$ Limit detection				
$\checkmark 2111$ Automatic setup	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \hline \end{gathered}$
- 2112 Manual adjustment LL	30%	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
ᄂ 2113 Manual adjustment UL	80 \%	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 2114$ Damping	Off	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 2120$ Motion detection				
$\checkmark 2121$ Automatic setup	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
- 2122 Manual adjustment LL	30%	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
ᄂ 2123 Manual adjustment UL	80%	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} E \\ M \end{gathered}$
$\checkmark 2124$ Damping	Off	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
$\checkmark 2130$ Parallel mode	Channel 1	E M 0	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark \quad 2200$ Assignment outputs				
$\checkmark 2210$ Switching contact 1	Limit (1M)	E M O	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
- 2220 Switching contact 2	- Limit (1M) for FTR525-**1 - Motion (2M) for FTR525-**2	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 2230$ Current output	Limit (1M)	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
$\checkmark \quad 2300$ Current output				
$\checkmark 2310$ Current output mode	Standard	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
$\rightarrow \quad 2320 \quad 4 \mathrm{~mA}$ value	10%	E M O	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
$\rightarrow \quad 233020 \mathrm{~mA}$ value	90%	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 2340$ Failure mode	$\operatorname{MIN}(<4 \mathrm{~mA})$	E M O O	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} E \\ M \end{gathered}$
$\checkmark 2350$ Fixed value	12.0 mA	E M 0	E M 0	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$

Function/function group - designation	Factory setting	Access rights		
$\rightarrow 2400$ Switching outputs				
$\checkmark 2410$ Switching output 1				
2411 Switching function output 1	Max.safety	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
$\longrightarrow 2412$ Switch-on point output 1	50 \%	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
2413 Switch-off point output 1	40%	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\longrightarrow 2414$ Switch-on delay output 1	Off	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
$\rightarrow 2415$ Switch-off delay output 1	Off	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
$\checkmark 2420$ Switching output 2				
2421 Switching function output 2	Max.safety	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{M} \end{aligned}$
2422 Switch-on point output 2	50 \%	E M O	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
2423 Switch-off point output 2	40 \%	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$
2424 Switch-on delay output 2	Off	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\llcorner\quad 2425$ Switch-off delay output 2	Off	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\rightarrow 2500$ Application analysis				
$\checkmark \quad 2510$ Min/Max limit (1M)	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\checkmark 2520$ Min/Max motion (2M)	-	E M O	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	
$\checkmark 2530$ Reset Min/Max	-	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\rightarrow 2540$ Signal strength limit (1M)	-	E M 0	E M O	
$\longrightarrow 2550$ Signal strength motion (2M)	-	E M O	E M 0	

Function/function group - designation	Factory setting	Access rights		
3000 System				
$\stackrel{\square}{-} 3100$ Management				
$\llcorner 3110$ Device management				
$\checkmark \quad 3111$ Tag	-	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
$\longrightarrow \quad 3112$ Save user settings	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\longrightarrow 3113$ Device reset	-	$\begin{gathered} \mathrm{E} \\ M \end{gathered}$	$\begin{gathered} E \\ M \end{gathered}$	$\begin{gathered} E \\ M \end{gathered}$
$\llcorner 3120$ User management				
$\checkmark 3121$ Access rights	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	γ
ᄂ 3122 Enter unlock parameter	-	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$
3123 Define unlock parameter	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \hline \end{gathered}$
$\rightarrow \quad 3124$ Confirm unlock parameter	-	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$	$\begin{gathered} \hline E \\ M \end{gathered}$
$\rightarrow 3200$ Information FTR525				
$\checkmark 3210$ FTR525 serial number	-	E M 0	E M 0	
$\rightarrow 3220$ FTR525 order code	-	E M 0	E M 0	
$\longrightarrow 3230$ FTR525 order identifier	-	E M 0	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	
$\llcorner 3240$ FTR525 firmware version	-	E M 0	$\begin{gathered} \mathrm{E} \\ M \\ 0 \end{gathered}$	
ᄂ 3250 Operation time	-	E M O	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ 0 \\ \hline \end{gathered}$	
$\rightarrow 3300$ Information FDR				
$\checkmark \quad 3310$ FDR serial number	-	E M 0	E M 0	
$\checkmark \quad 3320$ FDR order code	-	E M 0	E M 0	
$\checkmark 3330$ FDR order identifier	-	E M O	E M 0	
$\checkmark \quad 3340$ FDR firmware version	-	E M 0	E M 0	γ
$\checkmark 3350$ FDR hardware version	-	E M O	E M 0	

Function/function group - designation	Factory setting	Access rights		
- 3400 Information FQR				
$\checkmark \quad 3410$ FQR serial number		$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	
$\square 3420$ FQR order code		$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	
$\checkmark 3430$ FQR order identifier		$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	γ
$\rightarrow 3440$ FQR firmware version		$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$>$
$\checkmark 3450$ FQR hardware version		$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	
$\llcorner 3500$ Display				
$\checkmark 3510$ Language	English	E M 0	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 3520$ Display mode	- Bargraph limit (1M) for FTR525-**1 - Bargraph alternating 1M/2M for FTR525-**2	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \end{gathered}$
$\checkmark 3530$ Back to home	120 s	E M 0	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ 0 \end{gathered}$
$\longrightarrow 3540$ Format display	Off	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$
$\rightarrow 3550$ Contrast	4	E M 0	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ \mathrm{O} \\ \hline \end{gathered}$
$\checkmark 3560$ Brightness	4	E M 0	$\begin{gathered} \hline E \\ M \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ \mathrm{M} \\ 0 \\ \hline \end{gathered}$

Index

A

Access concept 22
Accessories 56
Ambient temperatures 58
Analysis 44
Automatic setup 28,30
B
Brightness40
C
Configuration
40
Connection lines 18
Contrast 39
Current output 57
D
Damping
30, 31
Data logging
46
Degree of protection 58
Diagnostics 47
Display 20
Disposal 55
Documentation 6
Dot matrix display 25
E
Electrical connection
16
Electromagnetic compatibility (EMC) 58
Ex approval
F
Fault48
Firmware version 50,53
Format display
39
H
Hazardous area 8
I
Initialisation27
K
Key lock 42
L
Language 27
Local display 23
M
Manual adjustment 28
Material 59
Min/Max limit 46
N
Nameplate 12
0
Operating 20
Operating menu 21,61
Operating philosophy 21
Operating temperature range 13
Operation 44
Operation time 51
Order code 50
Outputs 57
P
Parallel mode 31
Power consumption 58
Power supply 57
Previous diagnostics 49
Product design 10
R
Relay 57
Repairs 55
Reset 40, 46
Return 55
S
Safety Instructions (XA) 7, 8
Serial number 50
Signal strength 44
Simulation 40
Solid-state relay (SSR) 57
Switching output (open collector) 57
Switch-off delay 36
Switch-off point 35
Switch-on delay 36
Switch-on point 35
T
Tag 37
Technical data 57
Terminal assignment 17, 18, 19
Terminals 59
U
Unlock parameter 42
User change 42
User settings 40
W
Weight 58

[^0]: Notice:
 The bold marked options are the default values.
 ${ }^{* 1}$ Available with appropriate type of device
 *2 Default on FTR525-**1
 *3 Default on FTR525-**2

