JUMO dTRANS T1000

Temperature sensor with IO-Link

Operating Manual

90291500T90Z001K000

V3.00/EN/00656441/2022-10-26

The basic principles of IO-Link are available on the website www.IO-Link.com

1	Introduction
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Safety information.5Description and intended use.6Hot media.6Hazardous materials.6Approvals.7Display and connection elements.7Dimensions.8
2	Identifying the device version 12
2.1 2.2 2.3 2.4	Nameplate12Order details.14Scope of delivery.15Accessories15
3	Mounting
4	Electrical connection
4.1	Connection examples
5	Configuration
6	Functions
6.1 6.1.1 6.1.2 6.1.3 6.2 6.3 6.4	Switching points.20Hysteresis function.21Window function.22Switch-on delay/switch-off delay.23Fine adjustment.24Teach functions.26Fault signaling.27
7	Parameter overview
7.1 7.2 7.3	Process data .29 Configuration data .30 Service data .33
8	Technical data
8.1	Input

Contents

9	China RoHS
8.6	Environmental influences
8.5	Mechanical features
	Electrical data
8.3	Interface
	Output

1.1 Safety information

General

This manual contains information that must be observed in the interest of your own safety and to avoid material damage. This information is supported by symbols which are used in this manual as indicated.

Please read this manual before starting up the device. Store this manual in a place that is accessible to all users at all times.

If difficulties occur during startup, please do not intervene in any way that could jeopardize your warranty rights!

Warning symbols

CAUTION!

This symbol in connection with the signal word indicates that **material damage or data loss** will occur if the respective precautionary measures are not taken.

READ THE DOCUMENTATION!

This symbol, which is attached to the device, indicates that the associated **documentation for the de-vice** must be **observed**. This is necessary to identify the nature of the potential hazard, and to take measures to prevent it.

Note symbols

NOTE!

This symbol refers to **important information** about the product, its handling, or additional benefits.

REFERENCE!

This symbol refers to **additional information** in other sections, chapters, or other manuals.

DISPOSAL!

At the end of its service life, the device and any batteries present do not belong in the trash! Please ensure that they are **disposed of** properly and in an **environmentally friendly** manner.

1 Introduction

1.2 Description and intended use

NOTE!

Please read this manual before starting up the device. Store this manual in a place that is accessible to all users at all times.

The temperature sensor is used for temperature measurement and monitoring. The effect of the temperature on a resistance RTD temperature probe generates a signal, which is amplified, digitalized and processed.

The temperature sensor is equipped with an IO-Link interface as per specification 1.1. IO-Link supports bidirectional communication and is used to exchange the process data, parameters, diagnostic information and status messages. The two green LEDs are permanently lit as soon as power is supplied to the device. Once an IO-Link connection is established, the LEDs flash.

The switching behavior and the switching thresholds of the switching outputs (max. 2 pcs.; p or n switching) can be individually configured, as can many other parameters. Any IO-Link master can be used for the configuration.

The temperature sensor is thus suitable for use in plant and mechanical engineering in connections to automation systems. Many process connections are available to the user.

The temperature sensor is UL-approved. The approval stipulates use of the temperature sensor indoors only.

The protection offered by the temperature sensor may be impaired if the temperature sensor is used in a way that does not comply with the manufacturer's intended use.

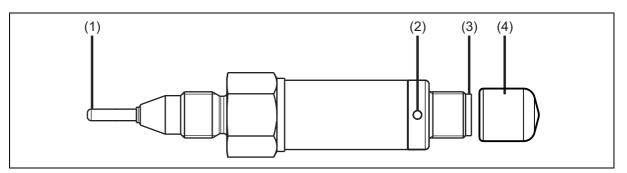
1.3 Hot media

Hot media may result in the device surfaces becoming hot and presenting a risk of injury.

- Allow the device and plant to cool down.
- Wear suitable protective equipment.
- If required, install contact protection.

1.4 Hazardous materials

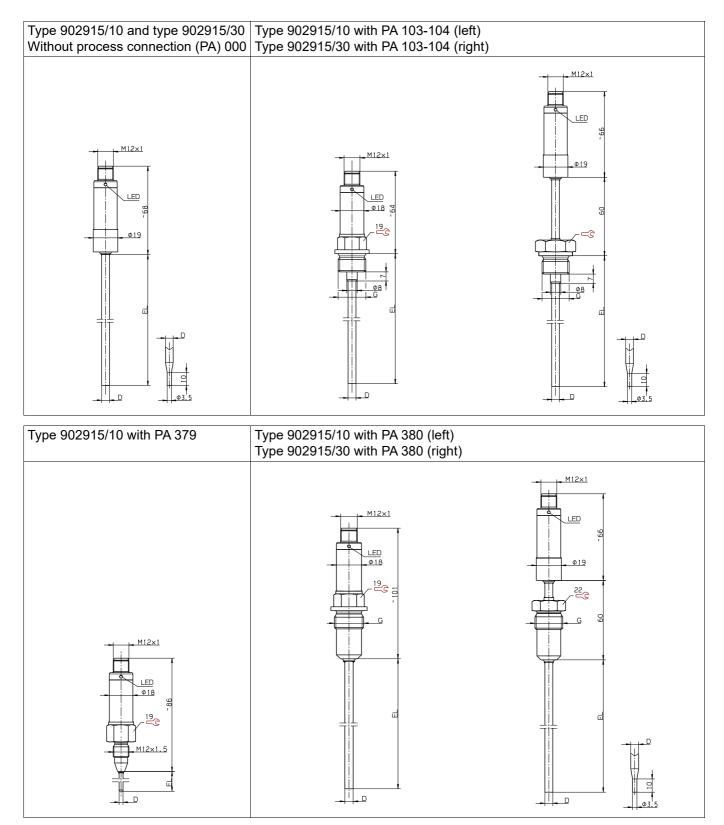
Using hazardous materials as a medium may result in abrasive and corrosive damage to components of the product that come into contact with the medium. The medium may leak and present a fire hazard and a risk to health.

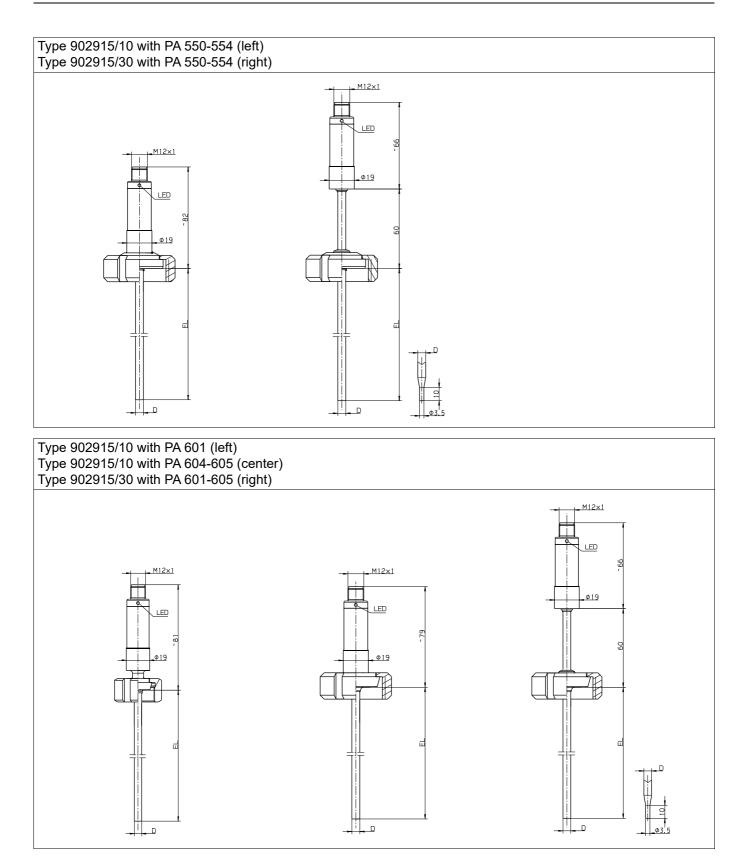

Carry out a risk assessment taking into consideration the safety data sheet for the relevant hazardous substance for mounting, operation, maintenance, cleaning, and disposal:

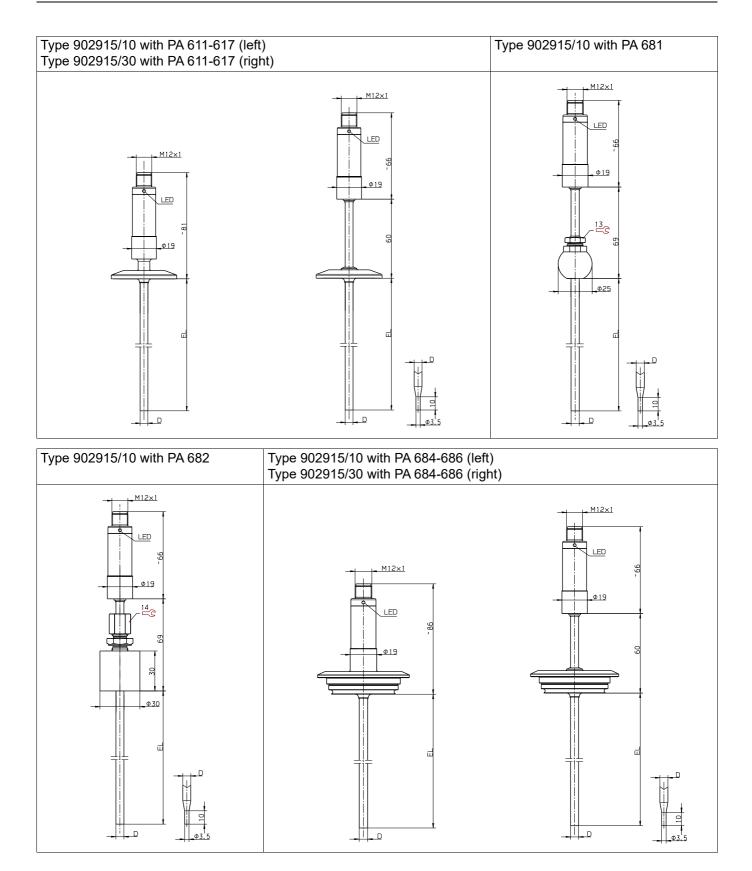
- Comparison and systematic checking of the durability of the components of the product that come into contact with the medium and the admissible environmental influences.
- Assessment of the risk to people and the environment.
- Assessment of the fire hazard due to the product materials, the admissible environmental influences, and the voltage supply.

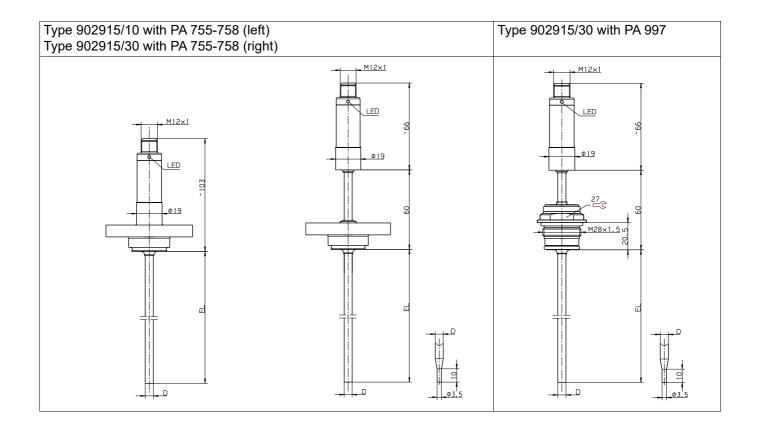
1.5 Approvals

c AL [°] us	Designation	UL
	Testing agency	-
	Certificate no.	2022-07-27-E201387
	Inspection basis	UL 61010-1, 3 Ed. Mai 2012 revised 19. Juli 2019 und CAN/CSA-C22.2 No. 61010-1 (2012-05). 3. Ed. with revision through 2018-11
	Valid for	Туре 902915

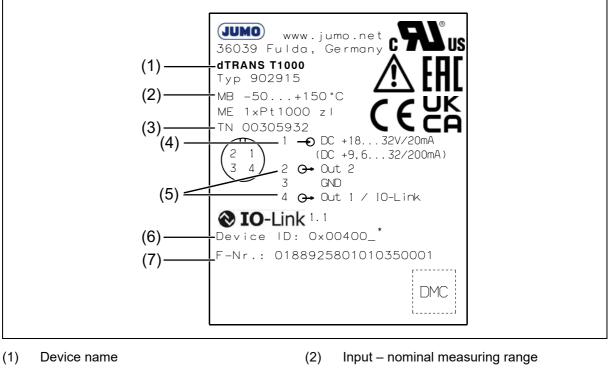

1.6 Display and connection elements


- (1) Protection tube with RTD temperature probe
- (2) Status LED (other identical LEDs opposite)
- (3) M12 connection
- (4) Protective cap for storage and transport


1 Introduction


1.7 Dimensions

1 Introduction



2.1 Nameplate

Position

The nameplate is located on the housing surface.

 (4) Voltage supply and maximum current consumption^a
⇒ For more in-depth information, see "Technical Data"
(6) Device ID

(5) Outputs

Part no.

(3)

(7) Fabrication number

^a The specifications outside the brackets "()" refer to use of the device in IO-Link operation. The specifications inside the brackets "()" refer to use of the device in switch operation.

Part no.

The part no. clearly identifies an article in the catalog. It is important for communication between the customer and the sales department.

Device ID

The device ID can help when localizing the device description file (IODD), which can be found on the manufacturer's website and also downloaded if necessary.

Downloading the IODD:

- 1. Open the website www.jumo.de (change the language to English if necessary)
- 2. Use the search function to select the device
- 3. Under "Software", download the ZIP file containing the collection of IODDs
- 4. Extract all files from the ZIP folder
- 5. Use the device ID to locate the IODD and save it

The IODD is now available for use with the IO-Link master's configuration tool. This can be used to configure and check the device. Instead of the manufacturer's website, you can also use the address: http://ioddfinder.io-link.com.

Fabrication number (F-Nr)

Among other things, the fabrication number indicates the date of manufacture (year/calendar week).

Date of manufacture

The device's date of manufacture (year and calendar week) is part of the fabrication number. Digits 12 to 15 denote the year of manufacture (in this case 17 for 2017) and the calendar week (11 in this case).

2 Identifying the device version

2.2 Order details

	(1)	Basic type
902915		JUMO dTRANS T1000 – Temperature sensor with IO-Link
	(2)	Basic type extension
10		IO-Link interface, M12 × 1 connector
30		IO-Link interface, M12 × 1 connector, high-temperature
	(3)	Operating temperature in °C
370		-50 to +150 °C
386		-50 to +260 °C
	(4)	Measuring insert
1013		1 × Pt1000 in 4-wire circuit
	(5)	Tolerance class of RTD temperature probe according to DIN EN 60751
2		Class A
3		Class AA
	(6)	Protection tube diameter D in mm
3		3 mm ^a
6		6 mm
	(7)	Insertion length
15		15 mm ^a
20		20 mm ^a
25		25 mm ^a
50		50 mm
100		100 mm
150		150 mm
	(8)	Process connection (PC)
000		None
103		Screw connection G 3/8
104		Screw connection G 1/2
379		Screw connection M12 x 1.5 with CIP-compliant conical seal
380		Screw connection G 1/2 with CIP-compliant conical seal
550		Aseptic screw connection DN 20 DIN 11864-1 Form A
551		Aseptic screw connection DN 25 DIN 11864-1 Form A
552		Aseptic screw connection DN 32 DIN 11864-1 Form A
553		Aseptic screw connection DN 40 DIN 11864-1 Form A
554		Aseptic screw connection DN 50 DIN 11864-1 Form A
601		Taper socket with union nut DN 10 DIN 11851 (dairy pipe fitting)
604		Taper socket with union nut DN 25 DIN 11851 (dairy pipe fitting)
605		Taper socket with union nut DN 32 DIN 11851 (dairy pipe fitting)
611		Clamping socket (clamp) DN 10/20 DIN 32676
613		Clamping socket (clamp) DN 25/40 DIN 32676
616		Clamping socket (clamp) DN 50 DIN 32676 (2" ISO 2852)
617		Clamping socket (clamp) 2 1/2" similar to DIN 32676
681		Ball welding socket with threaded fitting
682		Welding socket with CIP-compliant conical seal
684		VARIVENT® connection DN 15/10

	VARIVENT® connection DN 32/25					
	VARIVENT® connection DN 50/40					
	BioControl® D25					
	lioControl® D50					
	BioControl® D65					
	BioControl® D80					
	JUMO PEKA hygienic process connection					
(9)	Protection tube material					
	Stainless steel 316L (material no. 1.4404/1.4435)					
(10)	Extra code					
	With UL approval					
	Customer-specific configuration (specifications in plain text)					
	Protection tube offset ^b					
	Inspection certificate 3.1 DIN EN 10204 (material)					
	Wetted, electrolytically polished parts, surface roughness Ra ≤ 0.8 mm					
	Surface roughness $R_a \le 0.4 \mu m$ for clamping socket (clamp) (area touching medium)					
	DAkkS(DKD) calibration (standard, test points 0, 100 and 200 °C)					
	DAkkS(DKD) calibration (service, please state desired test points in plain text)					
	DAkkS(DKD) adjustment with calibration report (standard, test points 0, 100 and 200 °C)					
	DAkkS(DKD) adjustment with calibration report (service, please state desired test points in plain text)					

^a Only with screw connection M12 x 1.5 with CIP-compliant conical seal (process connection 379)

^b Not for screw connection M12 x 1.5 with CIP-compliant conical seal (process connection 379)

	(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)		(9)		(10)
Order code		/		-		-		-		-		-		-		-		/	
Order example	902915	/	10	-	370	-	1013	-	2	-	3	-	15	-	379	-	24	/	452

2.3 Scope of delivery

Designation
1 temperature sensor in the ordered version
1 installation instructions

2.4 Accessories

Designation	Part no.
IO-Link master upon request.	
Device data (IODD) at www.jumo.de or at http://ioddfinder.io-link.com	
Welding socket ^a G 1/2 for process connection 380	00378264
Welding socket with collar ^a M12 × 1.5 for process connection 379	00614228
Welding socket ^a M12 × 1.5 for process connection 379	00655051

^a Welding sockets made of material 1.4404, parts touching the media electrolytically polished, surface roughness Ra ≤ 0.4 μm

3 Mounting

The temperature sensor may only be installed, connected and started up by qualified and authorized personnel observing these operating instructions, the applicable standards, and the legal requirements (depending on the application).

If you experience difficulties during installation and startup, please contact the manufacturer.

The device can be installed in any position.

NOTE!

The temperature sensor is not suitable for safety-critical applications.

NOTE!

The temperature sensor is not suitable for installation and application in potentially explosive areas.

NOTE!

The temperature sensor must be connected to the potential equalization system of the plant via the process connection.

NOTE!

Mount the device so that abrasion at the process connection is avoided.

Mounting the sensor

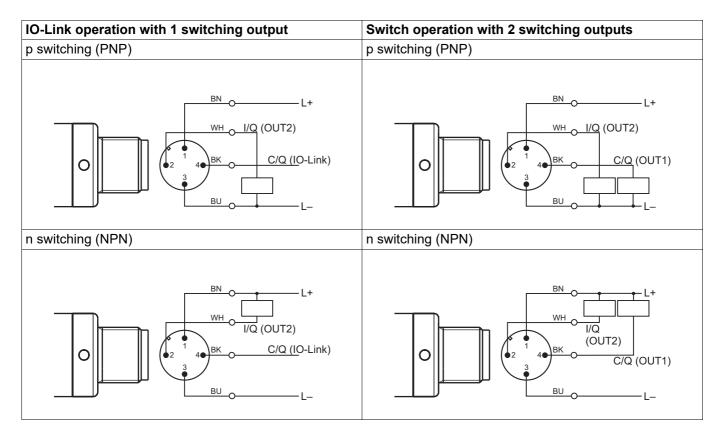
- Insert the temperature sensor into the corresponding drilled hole and tighten it by hand, making sure the profile seal and/or O-ring (if fitted) are sitting correctly
- Tighten the temperature sensor with a suitable wrench
- ⇒ For the wrench size, see chapter 1.7 "Dimensions", Page 8

Connection	Terminal assigr	Terminal assignment						
	O L+ WH O I/Q (OUT2) U U U U U U U U U U U U U U U U U U U							
	Round plug M12 × 1 (A-coded, non-rotating)							
Switch operation								
Voltage supply ^a DC 9.6 to 32 V	1 BN (brown) ^b 3 BU (blue)	L+ L-						
Switching output 1	4 BK (black)	C/Q = OUT1						
Switching output 2	2 WH (white)	I/Q = OUT2						
IO-Link operation	U							
Voltage supply ^a DC 18 to 32 V	1 BN (brown) 3 BU (blue)	L+ L-						
IO-Link	4 BK (black)	C/Q = IO-Link						
Switching output 2	2 WH (white)	I/Q = OUT2						
Potential equalization								
Functional bonding conductor FB ^c	<i>.</i>							

^a The auxiliary energy of the temperature sensor must meet SELV requirements. Furthermore, the device must be equipped with an electrical circuit that meets the requirements of EN 61010-1 with regard to "Limited-energy circuits".

^b The colour coding is only valid for A-coded standard cables!

^c The temperature sensor must be connected to the potential equalization system of the plant via the process connection.



NOTE!

When using the device with UL approval, the user must make sure that the accessory he uses is also approved for a UL application (e. g. cable with UL approval AVLV2/8 and/or cable with UL approval CYJV/7 or CYJV/8 or PVVA/7 or PVVA2/8, in each case approved for ambient temperatures > 90 °C).

4 Electrical connection

4.1 Connection examples

Starting up the IO-Link master and configuration tool

If you are using a conventional IO-Link master, you must complete the following steps to configure the sensor.

- 1. Start up the hardware and software for the IO-Link master
- 2. Load the sensor's device description file (IODD)
 - a) Open the website www.jumo.de (change the language to English if necessary)
 - b) Use the search function to select the sensor
 - c) Under "Software", download the ZIP file containing the collection of IODDs
 - d) Extract all files from the ZIP folder
- 3. Start the configuation tool
- 4. Update the device catalog (import the IODD; localize using the "device ID" on the nameplate or the text file in the IODD collection)
- 5. Create a new project
- 6. Establish a connection
- 7. Configure, extract, monitor, etc., the sensor

Instead of the manufacturer's website, you can also use the address: http://ioddfinder.io-link.com.

Configuration tool (overview)

Depending on the configuration tool, the menu structure contains different areas. The typical structure is listed below:

- Identification and information These areas show information on the manufacturer and device as well as general information.
- Parameters
 - This section is used to configure the device.
 - General parameters
 - Switching points ⇒ chapter 6.1 "Switching points", Page 20
 - Fine adjustment ⇒ chapter 6.2 "Fine adjustment", Page 24
 - Event settings ⇒ chapter 6.4 "Fault signaling", Page 27
 - Versions
 - Service information
- Monitoring

In this area process data can be extracted (snapshot).

Diagnosis and events

These areas show diagnostic data and information about events.

 Process data This area shows the current process data, which is extracted cyclically.

6 Functions

CAUTION!

Write operations to some R/W parameters result in them being saved to the EEPROM. This memory module has only a limited number of write cycles (approx. 100,000).

Frequent writing of certain parameters can therefore result in a memory error.

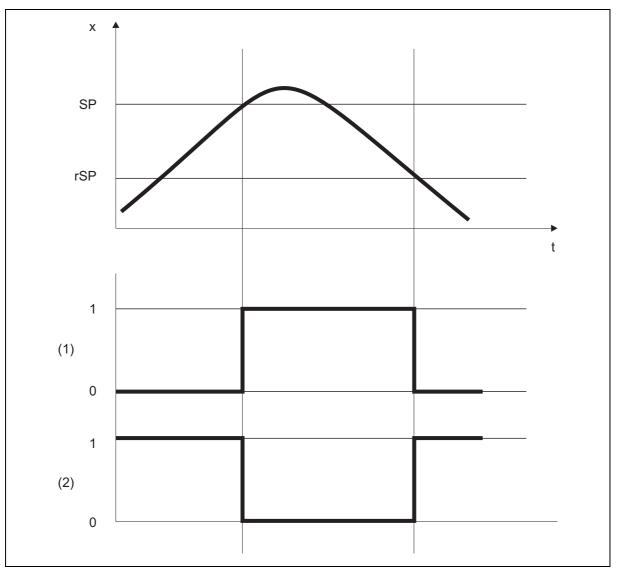
Fast writing cycles should thus be avoided.

6.1 Switching points

Depending on the operating mode, the sensor has 1 or 2 switching outputs. It automatically detects the connection type and responds accordingly. Separate parameters are available for both switching outputs.

Operating mode	Output	Pin at the M12 connection
SIO mode	Switching output 1	C/Q (OUT1)
(SIO = Standard IO)	Switching output 2	I/Q (OUT2)
IO-Link mode	IO-Link communication	C/Q (IO-Link)
	Switching output 2	I/Q (OUT2)

Parameter


Parameter	Selection/settings	Description				
Switching behavior	Inactive	When inactive is selected, the				
	Hysteresis function, N/O Contact	selected switching output is not				
	Hysteresis function, N/C Contact	activated.				
	Window function, N/O Contact					
	Window function, N/C Contact					
Switching point (SP) or	-999 to 0 to +999	The selected switching output is				
window high (FH)		only activated if rSP < SP or				
Release point (rSP) or	-999 to 0 to +999	FL < FH.				
window low (FL)		⇔Chapter 6.1.1				
		⇔Chapter 6.1.2				
Switch-on delay (VSP)	0 to 100 s	⇔Chapter 6.1.3				
Switch-off delay (VrSP)	0 to 100 s					
Output driver mode	p-switching	⇔Chapter 4.1				
	n-switching					

6.1.1 Hysteresis function

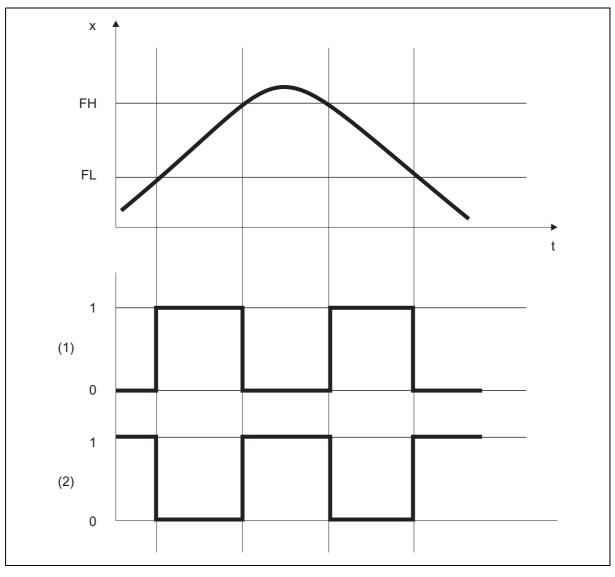
The hysteresis function switches the output as soon as the switching point "SP" is reached. When the release point "rSP" is reached, the output switches again.

The hysteresis function distinguishes between N/C and N/O contacts.

Switching requirement: Switching point "SP" ≥ Release point "rSP"

- x = Measured value
- t = Time
- SP = Switching point
- rSP = Release point
- (1) = N/O contact
- (2) = N/C contact

6 Functions

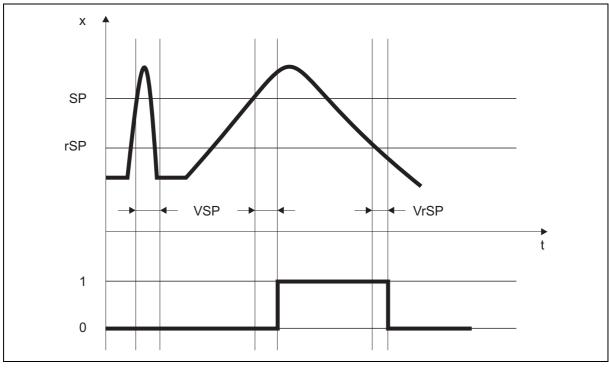

6.1.2 Window function

Under the window function, the window range is defined using the parameters window low "FL" (lower value) and window high "FH" (upper value). The output switches when the current measured value (x) is between the two limits [(x > FL) & (x < FH)].

The window function distinguishes between N/C and N/O contacts.

Requirement: Window high "FH" >= Window low "FL"

The window high "FH" and window low "FL" switching points have a fixed symmetrical hysteresis of ± 0.25 % of the measuring range.



- x = Measured value
- t = Time
- FH = Window high
- FL = Window low
- (1) = N/O contact
- (2) = N/C contact

6.1.3 Switch-on delay/switch-off delay

The switch-on delay "VSP" and switch-off delay "VrSP" prevent switching of the output being triggered by peaks or drops in the measured values.

If the necessary measured value is no longer measured once the delay time has passed, the output is not switched.

x = Measured value

t = Time

SP = Switching point

rSP = Release point

- VSP = Switch-on delay
- VrSP = Switch-off delay

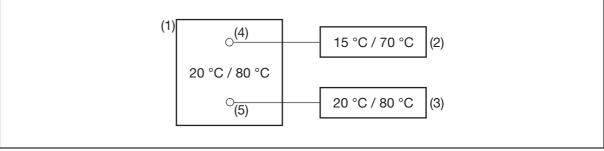
6 Functions

6.2 Fine adjustment

You can use customer-specific fine adjustment to correct the measured values of the sensor. In contrast to offsetting, which is used to specify a constant correction value for the entire characteristic line, fine adjustment can also be used to change the gradient of the characteristic line.

NOTE!

This data is not stored in the parameter manager.


Parameter

Parameter	Selection/settings	Description
Active	No, Yes	Fine adjustment is only active if you select Yes
Actual start value	-999 to 0 to +999	Lower measured value
Target start value	-999 to 0 to +999	Lower reference value
Actual end value	-999 to 0 to +999	Upper measured value
Target end value	-999 to 0 to +999	Upper reference value

Example

The temperature inside a furnace is measured and displayed. Due to a deviation in the measurement, the sensor's measured value does not correspond to the actual value (reference measurement). The amount of deviation is different at the upper and lower measuring points, meaning an offset correction is not suitable.

Active:	Yes
Actual start value:	15 °C (measured value)
Target start value:	20 °C (reference measurement)
Actual end value:	70 °C (measured value)
Target end value:	80 °C (reference measurement)

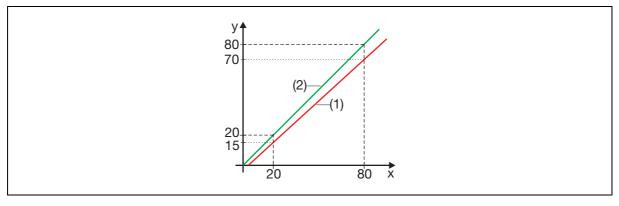
(1) Furnace

(2) Measured values from the sensor

- (3) Reference values
- (4) Sensor
- (5) Reference measurement

Performing fine adjustment

- Determine the lower value (as low and constant as possible) with the reference measuring device. Example: Set furnace temperature to 20 °C.
- Enter the measured value as the actual start value and the reference value as the target start value. Example: Enter 15 and 20.
- Determine the upper value (as high and constant as possible) with the reference measuring device. Example: Increase furnace temperature to 80 °C.
- Enter the measured value as the actual end value and the reference value as the target end value. Example: Enter 70 and 80.



NOTE!

The actual start value and actual end value can also be selected with the teach function. \Rightarrow chapter 6.3 "Teach functions", Page 26

Characteristic line

The following diagram shows the changes in the characteristic line caused by the fine adjustment (point of intersection with the x axis as well as the gradient).

- y Measured value
- x Reference value
- (1) Characteristic line before fine adjustment
- (2) Characteristic line after fine adjustment

Resetting the fine adjustment

To reverse the fine adjustment, the "Active" parameter must be set to "No".

6 Functions

6.3 Teach functions

The teach functions can be used to transfer certain commands to the sensor.

Teach functions in the area of "General parameters"

Teach function	Description
Reset to default settings	All parameters under "General parameters", "Switching points", "Fine adjustment" and "Event settings" are reset to the default settings. The parameters under "Service information" stay the same.

Teach functions in the area of "Fine adjustment"

Teach function	Description
Set actual start value	The current measured value is adopted as the actual start value.
Set actual end value	The current measured value is adopted as the actual end value.

Teach functions in the area of "Service information"

Teach function	Description
Reset all	All parameters under "Service information" are reset to the de- fault settings.
Reset operating hours counter	The operating hours counter is reset to the default settings.
Reset drag indicator min.	The stored minimum value is reset to the default settings.
Reset drag indicator max.	The stored maximum value is reset to the default settings.

NOTE!

After executing a teach function, the data may have to be exported from the sensor again in certain circumstances.

6.4 Fault signaling

IO-Link offers a range of fault signaling options (device status, event codes, PDValid-Flag). Furthermore, malfunctions can also be signaled within the process data via the process value itself or the status of the process value.

Overview

Description	Signaling via pro- cess value in PDI ^a	Process value status in PDI (1 byte)	Device status	Event code (Standard event)	Event activa- tion or deacti- cation possi- ble	Event er- ror type
No error	-	-	0 (device is working prop- erly)	-	-	-
Process value invalid	Yes	Bit0 (Process data	4 (failure)	0x1000	Yes	Error
Overrange	Yes	invalid)		0x8C20	Yes	Error
Underrange	Yes				Yes	Error
Error in config- uration data	No	Bit1 (Parameter er- ror)	4 (failure)	0x6320	No	Error
Error in cali- bration data	No	Bit2 (Device is de-	4 (failure)	0x5000	Yes	Error
Device is de- fective (Probe break, probe short circuit)	Yes	fective)				
Undervoltage	No	-	2 (Outside the specification)	0x5111	No	Warning
Temperature error, overload	No	-	4 (failure)	0x4000	No	Error

^a PDI = Process Data Input

Device status and event codes

Various events can be activated or deactivated via configuration parameters.

PD-Valid Flag

If the device status is 4 (failure), the PDValid-Flag is set to zero (false). This means that all of the process data is invalid. In order to determine the precise cause, the process value or status bits can be evaluated.

Process value

The fault signaling is displayed as a floating-point value or integer value. The following statuses are defined:

Error	Error code for floating-point values (TFLOAT)	Error code for integer values (TINT32)
Measuring range underflow	1.0×10^{37}	2147483638
Measuring range overflow	2.0×10^{37}	2147483639
Not a valid input value	3.0×10^{37}	2147483640
Division by zero	4.0×10^{37}	2147483641
Mathematical error	5.0 × 10 ³⁷	2147483642
Probe short circuit	7.0×10^{37}	2147483644
Probe break	8.0 × 10 ³⁷	2147483645

Process value status

 \Rightarrow See chapter 7.1 "Process data", Page 29

7.1 Process data

The data is transferred in a cycle via the IO-Link interface to the IO-Link master (PDI = Process Data Input). The entire process data can be extracted via index 40 and subindex 0.

Designation	Data type	Value range	Default	Description
Temperature pro- cess value	TFLOAT or TINT32		0	The "Data format" configuration parameter can be used to switch between the data type TFLOAT and TINT32.
				⇔Chapter 7.2
Temperature pro- cess value unit	TUINT8	0 = °C 1 = °F	°C	
Temperature pro- cess value status	TUINT8 (bit field)	Bit 0 = Process value in- valid (overrange or un- derrange) Bit 1 = Error in configu- ration data Bit 2 = Error in calibra- tion data (device is de- fective)	0	In order to provide a simple way to identify errors, alongside IO-Link's standard troubleshooting func- tions, a status byte is included in the process data. This signals er- rors in the sensor and is easy to analyze in the higher-level sys- tem. Errors are entered on a bit by bit basis but can also be combined to contain several device errors. ⇔Chapter 6.4
Switching output	TUINT8 (bit field)	Bit 0 = Switching output 1 Bit 1 = Switching output 2	0	0 = Not switched 1 = Switched

7.2 **Configuration data**

The configuration is stored in the parameter manager and is transferred via the IO-Link interface in an acyclic process.

General

Designation	Index	Subin- dex	Data type	Value range	Default	Ac- cess right ^a	Description
Data format	64	0	TENUM (1 byte)	0 = Floating point 1 = Integer	Float- ing point	RW	
Temperature pro- cess value unit	120	0	TENUM (1 byte)	0 = °C 1 = °F	°C	RW	
Temperature pro- cess value offset	121	0	TFLOAT	-999 to 999	0	RW	
Temperature fil- ter time constant	122	0	TFLOAT	0 to 100 s	0	RW	
Standard com- mand	2	0	Button	130 = Reset to de- fault setting	-	WO	The default data is loaded.

^a RW = Read and write access RO = Read-only access WO = Write-only access

Switching output 1 and 2

Designation	Index	Subin- dex	Data type	Value range	Default	Ac- cess right	Description
Switching behav-	200	1	TENUM	0 = Inactive	Inactive	RW	
ior	and 201			1 = Hysteresis func- tion N/O contact			
				2 = Hysteresis func- tion N/C contact			
				3 = Window function N/O contact			
				4 = Window function N/C contact			la day 200 -
Switching point/ Window high	200 and 201	2	TFLOAT	-999 to 999	0	RW	Index 200 = Switching out- put 1
Release point/ Window low	200 and 201	3	TFLOAT	-999 to 999	0	RW	Index 201 = Switching out- put 2
Switch on Delay	200 and 201	4	TFLOAT	0 to 100 s	0	RW	
Switch off Delay	200 and 201	5	TFLOAT	0 to 100 s	0	RW	
Output mode	200 and 201	6	TENUM (1 byte)	0 = p-switching 1 = n-switching	p- switch- ing	RW	

Events

Designation	Index	Subin- dex	Data type	Value range	Default	Ac- cess right	Description
Event settings	111	0	TUINT8 (bit field)	Bit 0 = Process data invalid Bit 1 = Process data overrange Bit 2 = Process data	0	RW	0 = Inactive 1 = Active
				Bit 2 = Process data underrange Bit 3 = Device hard- ware error			

7 Parameter overview

Fine adjustment data

Designation	Index	Subin- dex	Data type	Value range	Default	Ac- cess right	Description
Active	220	0	TENUM (1 byte)	0 = No 1 = Yes	No	RW	
Actual start value	221	0	TFLOAT	-999 to 999	0	RW	
Actual end value	222	0	TFLOAT	-999 to 999	0	RW	
Target start value	223	0	TFLOAT	-999 to 999	0	RW	
Target end value	224	0	TFLOAT	-999 to 999	0	RW	
Standard com- mand	2	0	Button	160 = Set actual start value	-	WO	
Standard com- mand	2	0	Button	161 = Set actual end value	-	WO	

NOTE!

This data is not stored in the parameter manager and is transferred via the IO-Link interface in an acyclic process.

7.3 Service data

The service data is written to the EEPROM in a cyclical process (every 10 minutes) and can be reset via the teach functions.

Designation	Index	Subin- dex	Data type	Value range	Ac- cess right	Description
Operating hours counter	3000	0	TUINT32		RO	
Drag indicator tem- perature process val- ue min.	3002	0	TFLOAT		RO	
Drag indicator tem- perature process val- ue max.	3003	0	TFLOAT		RO	
Reset all	3100	0	Device com- mand	1 = Reset	WO	Resets all drag indi- cators and the oper- ating hours counter
Reset operating hours counter	3100	0	Device com- mand	2 = Reset	WO	
Reset drag indicator temperature min.	3100	0	Device com- mand	3 = Reset	WO	
Reset drag indicator temperature max.	3100	0	Device com- mand	4 = Reset	WO	
VDN version	1000	0	TSTRING	12 byte	RO	
Bootloader version	1001	0	TSTRING	14 byte	RO	

8 Technical data

8.1 Input

Sensor element	RTD temperature probe Pt1000
Standard	DIN EN 60751
Measuring range	902915/10: -50 to +150 °C
	902915/30: -50 to +260 °C
Sensor accuracy	Class A, ±(0.15 + 0.002 × ItI) °C ^a
	Class AA, ±(0.10 + 0.0017 × Itl) °C ^a
Connection type	Resistance measurement 4-wire
Calibration accuracy of the elec-	$\leq \pm (0.08 \%)^{b}$
tronic components	
Ambient temperature influence	≤ 0.0025 %/K ^{b, c}
Measuring current	≤ 500 µA
Sampling rate	160 ms
Input filter	Digital filter, 2nd order; filter constant can be set
Galvanic isolation	to the protection tube;
	no galvanic isolation between sensor and output

^a Itl = temperature value in °C regardless of the prefix sign.

^b All accuracy specifications in % relative to the respective measuring range
^c Relative to the temperature deviation at the calibration point (25 °C ±5 K)

Measuring circuit monitoring

Process data invalid	
Measuring range overflow	IO-Link event configurable;
Measuring range underflow	appears in the process value as an error value
Device hardware fault	

8.2 Output

Number	1 output in IO-Link operation (tion standard version 1.1; see	output signal according to IO-Link communica-
		- /
		(SIO mode; SIO = standard IO)
Switching functions configurable	Hysteresis function or window	function
	N/C or N/O contact	
	Output p switching (PNP) or n	switching (NPN)
	Switch-on/switch-off delay	
Switching current	≤100 mA per output	
Voltage drop at switching transistor	≤2 V	
Short-circuit proof	Yes (clocked)	
Reverse polarity protected	Yes	
Current limiting	Yes	
Hysteresis		
For hysteresis function	Configurable	
For window function	Fixed setting (symmetrical; ±0	.25 % of the measuring range)
Switch-on, switch-off delay	0 to 100 s	
Response time	In water 0.4 m/s	In air 3.0 m/s
Protection tube Ø 6 mm	$t_{0.5} = 5 s; t_{0.9} = 12 s$	$t_{0.5} = 40 \text{ s}; t_{0.9} = 110 \text{ s}$
(standard)	0.0	0.0
Protection tube Ø 6 mm (offset by Ø 3.5 mm)	t _{0.5} = 2 s; t _{0.9} = 5 s	t _{0.5} = 25 s; t _{0.9} = 85 s
Protection tube Ø 3 mm	t _{0.5} = 1.5 s; t _{0.9} = 4 s	t _{0.5} = 15 s; t _{0.9} = 50 s

8.3 Interface

(PA 379)

Communication interface	IO-Link device V 1.1, downward compatible to V 1.0
Data transfer rate (baud rate)	COM 3 (230.4 kBaud)
Max. cable length	20 m, unshielded
Min. cycle time	2 ms
IO Device Description (IODD)	Depending on the ordered input range; available on the manufacturer's web- site www.jumo.de or at http://ioddfinder.io-link.com

8.4 Electrical data

Voltage supply	
In IO-Link operation	DC 18 to 32 V
In switch operation	DC 9.6 to 32 V
Nominal voltage	DC 24 V
Current consumption	
In idle mode	≤16 mA
In IO-Link operation	≤20 mA
In switch operation	≤200 mA (with 2 switching outputs)
Electrical safety	Protection rating III according to DIN EN 61140
Intended use	Temperature measurement in industrial plants

The auxiliary energy of the temperature sensor must meet SELV requirements. Furthermore, the device must be equipped with an electrical circuit that meets the requirements of EN 61010-1 with regard to "Limited-energy circuits".

8.5 Mechanical features

Materials	
Protection tube	Stainless steel 1.4404 (1.4435 for clamp acc. to DIN 32676)
Process connection	Stainless steel 1.4404 (1.4435 for clamp acc. to DIN 32676)
Housing	Stainless steel
Installation position	Any
Weight ^a	902915/10 with PA 104 and EL = 100 mm: approx. 80 g
	902915/30 with PA 104 and EL = 100 mm: approx. 120 g

^a The weight of the temperature sensor depends on the process connection (PA) and the insertion length (EL).

8.6 **Environmental influences**

902915/10: -50 to +150 °C
902915/30: -50 to +260 °C
-40 to +85 °C (ambient temperature range of the head)
-40 to +85 °C
≤100 % humidity without condensation on the outer skin of the device
≤90 % relative humidity without condensation
3K7 acc. to DIN EN 60721-3-3
10 g, at 10 to 500 Hz acc. to DIN EN 60068-2-6
20 g for 11 ms according to DIN EN 60068-2-27
50 g for 1 ms according to DIN EN 60068-2-27
Liquid and gaseous media
According to DIN EN 60529
IP66/IP67/IP69
According to EN 61326-2-3
Class B ^b
Industrial requirement

Basic type 902915/10: At process temperatures above 120 °C, the maximum admissible ambient temperature is 60 °C (stated at nominal voltage DC 24 V). Basic type 902915/30: No restrictions (stated at nominal voltage DC 24 V). а

^b The product is suitable for industrial use as well as for households and small businesses.

	Ċ		有毒有害物质	有毒有害物质或元素 Hazardous substances	s substances	
部件名称	Q					
Product group: 902915)					
	铅(PP)	(Hg) 悉	镉(Cd)	六价铬(Cr(VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
<u></u>	0	0	0	0	0	0
过程连接 Process connection (Prozessanschluss)	0	0	0	0	0	0
	0	0	0	0	0	0
螺钉 Screw (Schraube)	0	0	0	0	0	0
本表格依据 SJ/T 11364-2014的规定编制。 (This table is prepared in accordance with the provisions of SJ/T 11364-2014.) O:表示该有害物质在该部件所有均质材料中的含量均在 GB/T 26572 规定的限量要求以下。 (O: Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.) X:表示该有害物质至少在该部件的某一均质材料中的含量超出 GB/T 26572 规定的限量要求。	副制。 vith the provisio 质材料中的含 <u>i</u> ance contained 某一均质材料□	ns of SJ/T 1136 [,] 重均在 GB/T 26 in all of the hor 中的含量超出 0		[要求以下。 rials for this part is be 的限量要求。	low the limit requireme	ent of GB/T 26572.)
(X: Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.)	ance contained	in one of the hc	mogeneous mat	erials used for this par	rt is above the limit req	uirement of GB/T 26572.)

9 China RoHS

JUMO GmbH & Co. KG

Street address: Moritz-Juchheim-Straße 1 36039 Fulda, Germany

Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany

Postal address: 36035 Fulda, Germany

Phone:	+49 661 6003-0
Fax:	+49 661 6003-607
Email:	mail@jumo.net
Internet:	www.jumo.net

JUMO Instrument Co. Ltd.

JUMO House Temple Bank, Riverway Harlow, Essex, CM20 2DY, UK Phone: +44 1279 63 55 33 Fax: +44 1279 62 50 29 Email: sales@jumo.co.uk Internet: www.jumo.co.uk

JUMO Process Control, Inc.

6724 Joy Road East Syracuse, NY 13057, USA

Phone:	+1 315 437 5866
Fax:	+1 315 437 5860
Email:	info.us@jumo.net
Internet:	www.jumousa.com

